

A Philips/PolyGram Corporation

A M E R I C A N

M E D I A

EIN T RAC TIVE

AIM Technical Note #53

UVLO
Motion-Video Encoding and Decoding

Kirk Rader, Philips IMS and Stephen Tickell, PRL June 5, 1990

UVLO is a motion-video encoding tool developed at Philips
Research Laboratory in England. The UVLO technique for video
data compression is derived from DYUV. UVLO takes advantage
of the fact that the human eye is more sensitive to differences in
brightness than to variations in color. UVLO reduces the amount
of stored UV information by a factor of 2 over DYUV, thus greatly
compressing the image data and increasing the screen area that can
be covered by the image.

Copyright © 1990 American Interactive Media.

ii TN#53: UVLO Motion-Video Encoding and Decoding

TN#53: UVLO Motion-Video Encoding and Decoding 1

UVLO: Motion-Video Encoding and Decoding

OVERVIEW

In this document, we describe the UVLO motion-video encoding tool developed
at Philips Research Laboratory in England. We provide a program example of
the use of the encoded data at run-time. (See Appendix 1 for a sample program).
Our intention is to introduce title engineers and other production personnel to
the use of this tool and the constraints on the resulting UVLO motion-video
sequences. We will publish a detailed user guide for this tool in the near future.

UVLO IMAGE COMPRESSION

UVLO is a technique for compressing video data derived from DYUV data. The
effectiveness of UVLO is based on the fact that human visual perception is more
sensitive to differences in brightness (Y) than to variations in color (UV). By
separating the Y, U, and V channels of an image and reducing the amount of
data stored for the U and V channels, we reduce the amount of data required for
storage of one picture. We can achieve this without seriously sacrificing image
quality.

When compared to full-resolution YUV, UVLO reduces the amount of UV
information in the horizontal dimension by a factor of 4; it reduces the amount of
UV in the vertical dimension by a factor of 2. It leaves the Y information
unchanged. Note that normal DYUV compresses UV data by a factor of 2 only in
the horizontal dimension only.

UVLO DECODING

UVLO supports motion video on a base case player. UVLO data representation
allows the 68000 processor in the player to decode the image to standard DYUV
format data in real-time.

UVLO ENCODING

The production tools used to capture and encode UVLO images for use in still
pictures or motion video sequences are not capable of running in real-time. The
encoding tool runs on a Sun workstation and uses the Androx image-processing
board for both image capture and encoding to YUV. (The Androx board
possesses 4 DSP chips that speed up the processing required for this type of
encoding.) The UVLO encoder (which runs on the Sun workstation) takes the
YUV data created by the Androx software and encodes it to UVLO.

The entire process, from video input to UVLO output, takes approximately forty
times real time; that is, it takes approximately forty minutes to encode one

2 TN#53 : UVLO Motion-Video Encoding and Decoding

minute of video. The UVLO tool should not become obsolete with the
introduction of specialized full-motion video hardware in the consumer CD-I
player. UVLO images can also be used to support multiple planes of motion
video or to significantly increase the number of still images that can be stored on
a disc. (The hardware in the consumer player will be based on a completely
different coding scheme.) UVLO is a truly base-case technique; the specialized
hardware to support higher compression ratio full-motion video is an extension
of the Green Book specification.

UVLO Production Pathway

The production pathway for UVLO-based images consists of:

• Capturing images from Betacam videotape

• Encoding images to UVLO representation

• Including run-time decoding functions in the title (application) code

Capturing images from videotape and encoding those images into UVLO
representation are completed with two different parts of a Sun/Androx tool.
Your run-time library must include facilities for decoding in real time to support
motion video applications. The data flow diagram on the following page shows
how UVLO data is captured, encoded, and then displayed on the player.

Note that the UVLO tool supports only frame rates of 15 or 30 frames per second
(FPS). It also provides precompression data reduction parameter that allows you
to scale the source image used for motion video. However, some image fidelity
is lost through the precompression process. Precompression is implemented as a
subsampling filter that simply lowers the resolution and, therefore, the
bandwidth requirements of the grabbed YUV image.

The exact calculation of the amount of screen area that can be covered by motion video
using the UVLO real-time files produced by this tool is complex. (See Appendix 2 for
some measurements of screen utilization.) It depends on the frame rate and audio level.
In addition, the precompression factor creates an additional constraint on the
percentage of the source image that can be scaled to

TN#53: UVLO Motion-Video Encoding and Decoding 3

movwin

grabfield

wincode

UVLO dataplaymov

rtf script

rtfb2

CTI rtf

convert_to_uware

uware rtf

disc (image)

decoder

Video Output

IMS881

rtfgen

Frames

Build CD

VTR

YUV data

UVLO Data Flow Diagram

4 TN#53 : UVLO Motion-Video Encoding and Decoding

fit in the UVLO window. In practice, it is probably necessary to determine these
parameters by trial and error—especially since the resulting perceptual image fidelity is
partly determined by the nature of the particular image grabbed. Since the optical
disc’s bandwidth (75 sectors per second) must allow the delivery of 2 frames per 5
sectors to support 30 FPS (5 sectors represents 1/15 of a second), the maximum practical
size of a frame can be only 2 sectors (4648 bytes). This is not a large percentage of the
screen (1202 pixels, or about 16% of the screen). To increase the screen percentage, you
must reduce the frame rate. At 15 FPS, it is possible to double the area of the screen
covered by motion video; then, the maximum frame size is 4 sectors (assuming that you
leave some free sectors for audio or other data).

Androx Bug

The UVLO tool depends on the Androx image processing board. The Androx
board has a hardware bug in its video circuitry. All signals that pass through the
board, whether for capture or display, have a forced “pedestal.” That is, the
black levels are raised several units above normal. Furthermore, any signal that
drops below nominal black level is clipped. This can result in washed out, color
distorted images. The extent to which the image is noticeably affected is
dependent on the nature of the image. Androx has been informed of the
problem but has announced no plan to correct it.

USING THE ENCODER

The interface to the UVLO encoder package is a program called movwin that
runs on the Sun workstation. When you invoke movwin, it opens a blank
window and waits for you to specify the video source data. To do so, you use
the window frame’s menu operated by the right button on your mouse. A
dialogue box with the option Source select appears to prompt you for the name
of the source material. At this point, you can select material that has already
been grabbed or which needs to be grabbed from the video tape recorder.

If you specify that your source is to be grabbed, movwin prompts you for the
starting and ending time codes of the sequence to be encoded. The SMPTE time
codes are entered in hours, minutes, seconds, and frames. You must make sure
that the VTR is connected, loaded with the desired tape, and ready for remote
control. Then, the program grabfield automatically searches for the specified
starting frame (using the time code) and scans through the tape grabbing each
frame without your intervention. In addition to grabbing the RGB image, the
Androx board also converts the data to YUV format. Thus, the data file
produced by grabfield has been preprocessed for input to the UVLO encoder.

The grabbing and preprocessing of data does not occur in real time. However, it
is I/O bound by the VTR transport and the SUN disk rather than by the
processor. Therefore, it is reasonably fast.

The UVLO encoder, wincode, runs entirely on the Sun. After the data is
processed by grabfield, wincode converts each frame of the data file into UVLO.

TN#53: UVLO Motion-Video Encoding and Decoding 5

The UVLO data contains image size and position information for each frame.
Once the source is selected and has been grabbed, the previously blank movwin
window on the Sun contains a black and white, low-resolution representation of
the image of the first frame of the YUV data. To scan the images, you simply use
the left and right mouse buttons to step through the sequence.

You can also define a specific area of the image for conversion to UVLO by
defining a rectangular window using the shift key and the middle mouse button.
The maximum size of the source window is controlled using the Coding option
in the movwin frame menu. The Coding option pops up a dialog box that
allows you to specify the coding method, precompression (an extra “squeeze”
factor that allows larger areas of the screen to be encoded), frame rate, and audio
level. After you set the coding parameters and define the image area for each
frame, you invoke the wincode program by returning to the Coding dialog box.
In the coding dialog box, you specify that a real-time file be produced and the
name of an audio file (which must be of the audio level specified earlier) to
interleave with the UVLO data. This creates a shell script that is automatically
executed when you select the Start coder button.

When the process is complete, you will have the following new files:

• The grabbed YUV data file

• The UVLO data file (the same name as the YUV data file, but followed by a

.uvl extension

• A shell script that was run to generate these files

• A subdirectory with the same name and the YUV data file, but followed by an

_rtf extension

The _rtf subdirectory has one file per frame of the UVLO encoded sequence, a
real-time file builder script, a CTI format real-time file, and a Microware format
real-time file.

6 TN#53 : UVLO Motion-Video Encoding and Decoding

Encoder Problems and Bugs

There are a number of problems and bugs in the encoder production pathway.
First, the YUV output of the grabfield program is enormous—over 100k per
frame. Thus, you must have either sufficient free space for hundreds or
thousands of megabytes (for a realistically long video sequence) of intermediate
files, or you must pipe the output of the grabber directly to wincode, the
encoder. This results in direct creation of the .uvl file without storage of a huge
YUV file on disk. The problem with this technique is that you must be certain in
advance of the correct arguments for wincode.

To accomplish this in the most practical way, use movwin as usual to grab and
generate a script to use a specified pipe for I/O and to use the actual ending time
code. Deciding later that you would like to change coding parameters, such as
audio level, precompression ratio, or window size requires regrabbing;
otherwise, you will not be able to modify the YUV file. In addition, if a
precompression scaling factor is specified, the encoder program, wincode, uses
more processor time and lags behind the grabber program, grabfield.

There is another problem during the real-time file generation phase of this
process. There are bugs in movwin and in rtfgen that create errors in the
scripts generated. The last step in the encoder script is to invoke rtfgen. This
program then creates individual UVLO frame files and a real-time file builder
script. It also invokes rtfb2 to generate the CTI format real-time file. (It also
invokes convert_to_uware to generate a Microware format real-time file, but we
are not concerned with that format here.)

For some combinations of coding parameters, the scripts generated by movwin
and rtfgen are incorrect. This causes the controlling script to hang and/or rftb2
to fail with a channel conflict error between the UVLO data and the audio data.
If you experience one of these problems, you must either correct the problem
yourself and re-invoke rtfb2 or convert_to_uware or create a script (such as a
DBL script) for another real-time file builder.

USING THE ENCODED DATA

On a Sun workstation with a “green” video display board (that is, the IMS881
board), you can play back the encoded .uvl file without leaving movwin. This
allows you to check the quality of the encoded image and to verify that the
sequence matches the title’s requirements.

After you have built the disc image from the real-time file created by the
encoder, you can use a UVLO decoder program on the player to display it. The
remainder of this document is a sample program that demonstrates how to
decode UVLO at run time and how to display the resulting DYUV image. The
sample program accepts the name of a real-time file and an optional integer
number of sectors per UVLO frame (the default is 2). Then it plays a “movie” of
the decoded UVLO data. The functions uvl_decode and uvl_lutgen are defined

TN#53: UVLO Motion-Video Encoding and Decoding 7

in a file uvl_decode.r provided to AIM by PRL. The primary feature of this
program is to demonstrate that you must first prepare for DYUV output by
opening the video path and creating and initializing the appropriate DYUV draw
maps. You must also allocate the UVLO look-up table (with uvl_lutgen). Then,
you call uvl_decode and pass it the following:

• Buffer into which the UVLO data was read

• Line-start array from the draw map

• Look-up table

• Pixel coordinates on the screen where the image is to be displayed

After uvl_decode returns, the draw map is filled with the decoded DYUV data

8 TN#53 : UVLO Motion-Video Encoding and Decoding

.

TN#53: UVLO Motion-Video Encoding and Decoding 9

APPENDIX 1: SAMPLE PROGRAM

/***

*
* Filename: uvlomove.c
* Project: UVLO decoding prototype
* Purpose: Decode UVLO real-time files
*
*
* Author: Kirk Rader
* Date: March 10, 1990
* Revisions:
* Tests:
* Dependencies:
* Notes:
*
* Copyright 1990 Philips Interactive Media Systems, all rights reserved.
*
**
****/

#include <stdio.h>
#include <modes.h>
#include <cdfm.h>
#include <ucm.h>
#include <stddef.h>
#include <csd.h>
#include <motion.h>

extern int errno;

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

#define FCTA (sesptr->fctid0) /* Plane A's FCT. */
#define FCTB (sesptr->fctid1) /* Plane B's FCT. */
#define LCTA (sesptr->lctid0) /* Plane A's LCT. */
#define LCTB (sesptr->lctid1) /* Plane B's LCT. */

#define PCBERR (1<<15) /* Bit in PCB_Stat field which indicates
 error in play. */

#define PCLERR (1<<7) /* Bit in PCL_Ctrl feild which indicates
error. */

#define VIDEOCHAN 0 /* Channel number of UVLO data. */
#define VIDEOCHANF (1<<VIDEOCHAN) /* Channel mask of UVLO data. */

#define AUDIOCHAN 0 /* Channel number of audio data. */
#define AUDIOCHANF (1<<AUDIOCHAN) /* Channel mask of audio data. */

#define SIGBUFULL 1000 /* Buffer full signal. */
#define SIGEOF 1001 /* End of play signal. */

#define NUM_PCL 4 /* Number of PCL's in
 circular list. */
#define NUM_DM 2 /* Number of drawmaps. */

static int x_off = 50; /* X offset for uvl_decode. */
static int y_off = 10; /* Y offset for uvl_decode. */

10 TN#53 : UVLO Motion-Video Encoding and Decoding

static int width = 0; /* Min width for matte. */
static int height = 0; /* Min height for matte. */

static int sect_per_frame = 2; /* Sectors per frame of UVLO data. */

static int os_version; /* Version of CDRTOS. */

static int bufull = 0; /* Buffer full flag (set by signal handler
 on buffer full signal). */

static int matte_set = 0; /* Flag which indicates need to set matte
 LCT instructions. */

static int quit = 0; /* Quit flag (set by signal handler on end
of
 play). */

static int framecnt = 0; /* Count of decoded frames. */

static int missedcnt = 0; /* Count of missed frames. */

static int curdm = 0; /* Index of current drawmap. */

static unsigned short lut[2048]; /* UVLO lookup table */

static PCL pcl_video[NUM_PCL]; /* Array of PCL's from which to build
circular list
 [see init_pcl(), below]. */

static int queue_empty = 1; /* PCL queue-empty flag. */
static PCL* read_pcl = &(pcl_video[0]); /* Current PCL into which data was read. */
static PCL* decode_pcl = &(pcl_video[0]); /* Current PCL out of which to decode. */

static PCL* cil_video[32] = {
 &(pcl_video[0]), (PCL*)NULL, (PCL*)NULL, (PCL*)NULL,
 (PCL*)NULL, (PCL*)NULL, (PCL*)NULL, (PCL*)NULL,
 (PCL*)NULL, (PCL*)NULL, (PCL*)NULL, (PCL*)NULL,
 (PCL*)NULL, (PCL*)NULL, (PCL*)NULL, (PCL*)NULL,
 (PCL*)NULL, (PCL*)NULL, (PCL*)NULL, (PCL*)NULL,
 (PCL*)NULL, (PCL*)NULL, (PCL*)NULL, (PCL*)NULL,
 (PCL*)NULL, (PCL*)NULL, (PCL*)NULL, (PCL*)NULL,
 (PCL*)NULL, (PCL*)NULL, (PCL*)NULL, (PCL*)NULL
};

static PCB pcb = {
 0, SIGEOF, 1, VIDEOCHANF | AUDIOCHANF, AUDIOCHANF,
 cil_video, (PCL*)NULL, (PCL*)NULL
};

static DrawmapDesc *dm[NUM_DM] = { NULL, NULL }; /* Drawmap array. */
static DrawmapDesc *bgdm = NULL; /* Background drawmap. */
static UCMSES *sesptr = NULL; /* pointer to screen */
static int vpath = -1; /* video path */
static int fd = -1; /* Real-time file descriptor. */

static int die(string)
char* string;
{
 int i;
 if (string) _errmsg(errno, "%s\n", string);
 (void)printf("%d Frames decoded, %d missed.\n", framecnt, missedcnt);
 for (i = 0; i < NUM_DM; ++i)
 if (dm[i]) dm_close(vpath, dm[i]);
 if (bgdm) dm_close(vpath, bgdm);
 if (vpath != -1) close_vid(vpath, sesptr);

TN#53: UVLO Motion-Video Encoding and Decoding 11

 if (fd != -1) {
 ss_abort(fd);
 close(fd);
 }
 exit(0);
}

static int init_pcl(num_pcl, pcl) /* Init num_pcl PCL's as a circular list. */
int num_pcl;
PCL* pcl;
{
 register int i;
 register int dsize;
 register int error;
 dsize = sect_per_frame * DSECT;
 error = 0;
 for (i = 0; i < num_pcl; ++i) {
 pcl[i].PCL_Sig = SIGBUFULL;
 pcl[i].PCL_Nxt = &(pcl[i + 1]);
 pcl[i].PCL_Buf = malloc(dsize);
 if (pcl[i].PCL_Buf == NULL) {
 error = -1;
 break;
 }
 pcl[i].PCL_BufSz = sect_per_frame;
 pcl[i].PCL_Err = NULL;
 pcl[i].PCL_Ctrl = 0;
 pcl[i].PCL_Cnt = 0;
 }
 pcl[num_pcl - 1].PCL_Nxt = &(pcl[0]);
 return error;
}

static void set_matte(left, top, right, bottom)
int left, top, right, bottom;
{
 (void)printf("matte: %d, %d, %d, %d\n",
 left,
 top,
 right,
 bottom);
 if (dc_wrli(vpath,
 LCTB,
 top,
 5,
 cp_matte(0, MO_SET, MF_MF0, 0, left)))
 die("matte left");
 if (dc_wrli(vpath,
 LCTB,
 top,
 6,
 cp_matte(1, MO_RES, MF_MF0, 0, right)))
 die("matte right");
 if (dc_wrli(vpath,
 LCTB,
 bottom,
 5,
 cp_matte(0, MO_END, MF_MF0, 0, left)))
 die("end matte");
}

static int sighandler(sig)
int sig;
{
 static int curpcl = 0;

12 TN#53 : UVLO Motion-Video Encoding and Decoding

 switch (sig) {
 case SIGEOF:
 quit = 1;
 break;
 case SIGBUFULL:
 if (pcl_video[curpcl].PCL_Ctrl & PCLERR)
 die("data error");
 /* Re-init PCL. */
 pcl_video[curpcl].PCL_Cnt = 0;
 pcl_video[curpcl].PCL_Ctrl = 0;
 pcl_video[curpcl].PCL_BufSz = sect_per_frame;
 /* Advance to next PCL. */
 read_pcl = &(pcl_video[curpcl]);
 if (++curpcl >= NUM_PCL) curpcl = 0;
 if (!queue_empty && (read_pcl == decode_pcl)) {
 decode_pcl = read_pcl;
 missedcnt += 1;
 }
 else {
 bufull = 1;
 queue_empty = 0;
 }
 break;
 default:
 die("sighandler");
 break;
 }
}

static void handle_bufull()
{
 /* Reset buffer full flag. */
 bufull = 0;
 /* Create the UVLO window matte, if necessary. */
 if (!matte_set) {
 struct frame_hd *hd = (struct frame_hd *)decode_pcl->PCL_Buf;
 int left, top, right, bottom;
 left = x_off * 2;
 top = y_off * 2;
 right = left + MAX(width, hd->xmax);
 bottom = top + MAX(height, hd->ymax);
 set_matte(left, top, right, bottom);
 matte_set = 1;
 }
 /* Decode and display frame, if able. */
 while (!queue_empty && (decode_pcl != read_pcl)) {
 uvl_decode(decode_pcl->PCL_Buf,
 dm[curdm]->dm_lnatbl1,
 lut,
 x_off,
 y_off);
 if (dc_wrli(vpath,
 LCTA,
 0,
 0,
 cp_dadr((int)dm[curdm]->dm_map1)))
 die("updating LCT");
 /* Advance to next drawmap. */
 if (++curdm >= NUM_DM) curdm = 0;
 framecnt += 1;
 if ((decode_pcl = decode_pcl->PCL_Nxt) == read_pcl) queue_empty = 1;
 }
}

/**

TN#53: UVLO Motion-Video Encoding and Decoding 13

*
* Function: main()
* Purpose: Initializes the video display and shows the slideshow.
* Globals: extern int errno
* static unsigned short lut[]
*
**/

main(argc, argv)
 int argc;
 char *argv[];
{
 char* filename = "", *progname;
 int n;

 progname = argv[0];

 (void)printf("UVLO move\n");

 while (--argc > 0) {
 char* arg;
 arg = *++argv;
 if (*arg == '-') {
 switch (*++arg) {
 case 'x':
 argc -= 1;
 arg = *++argv;
 sscanf(arg, "%d", &x_off);
 break;
 case 'y':
 argc -= 1;
 arg = *++argv;
 sscanf(arg, "%d", &y_off);
 break;
 case 'w':
 argc -= 1;
 arg = *++argv;
 sscanf(arg, "%d", &width);
 break;
 case 'h':
 argc -= 1;
 arg = *++argv;
 sscanf(arg, "%d", &height);
 break;
 case 'n':
 argc -= 1;
 arg = *++argv;
 sscanf(arg, "%d", §_per_frame);
 break;
 default:
 die("usage: 'uvlomove' ['-n' bufsize] filename");
 break;
 }
 }
 else
 filename = arg;
 }

 (void)printf("file='%s', buffer=%d\n",
 filename,
 n);

 uvl_lutgen(lut);

 get_os_version();

14 TN#53 : UVLO Motion-Video Encoding and Decoding

 if (init_pcl(NUM_PCL, pcl_video)) die("init_pcl");

 intercept(sighandler);

 /* Open the vpath and the special effects screen pointer */
 if (init_vid(&vpath, &sesptr, STD_DM_HEIGHT) == SYSERR)
 die("init_vid");

 setCompMode(vpath);

 /* Create DYUV drawmap in plane A */
 for (n = 0; n < NUM_DM; ++n)
 if ((dm[n] = dm_create(vpath, PA, D_DYUV, 768, 480, 92960, 0))
 == NULL)
 die("dm_create");

 /* Create background drawmap. */
 if ((bgdm = dm_create(vpath, PB, D_DYUV, 768, 480, 92960, 0))
 == NULL)
 die("dm_create");

 /* Setup the generic display control program */
 if (setup_dcp(vpath, sesptr, ICM_DYUV, ICM_DYUV) == SYSERR)
 die("setup_dcp");

 /* Set the DYUV start values to the standard Thomson values */
 if (dc_wrfi(vpath,
 FCTA,
 FCT_YUV,
 cp_yuv(PA, 16, 128, 128)))
 die("DYUV start values (plane A)");
 if (dc_wrfi(vpath,
 FCTB,
 FCT_YUV,
 cp_yuv(PB, 16, 128, 128)))
 die("DYUV start values (plane B)");

 /* Set plane order. */
 if (dc_wrfi(vpath, FCTA, FCT_PO, cp_po(PR_BA)))
 die("plane order");

 /* Set transparency control information. */
 if (dc_wrfi(vpath,
 FCTA,
 FCT_TCI,
 cp_tci(MIX_OFF, TR_OFF, TR_MAT0_T)))
 die("transparency control");

 /* Link drawmaps to LCT's. */
 if (dc_wrli(vpath,
 LCTA,
 0,
 0,
 cp_dadr((int)dm[NUM_DM - 1]->dm_map1)))
 die("linking plane A drawmap");

 if (dc_wrli(vpath,
 LCTB,
 0,
 0,
 cp_dadr((int)bgdm->dm_map1)))
 die("linking plane B drawmap");

 /* Execute DCP's. */

TN#53: UVLO Motion-Video Encoding and Decoding 15

 if (dc_exec(vpath, FCTA, FCTB))
 die("dc_exec");

 /* Open real-time file. */
 if ((fd = open(filename, S_IREAD)) == -1) die("open");

 /* Begin play of real-time data. */
 if (ss_play(fd, &pcb)) die("ss_play");

 /* Loop waiting for buffer-full or end-of-play signals. */
 while (!quit) {
 while (bufull)
 handle_bufull();
 pause();
 }

 /* Check for error condition on end-of-play. */
 if (pcb.PCB_Stat & PCBERR)
 die("play err");

 /* Exit normally. */
 die(NULL);

}

/**
* setCompMode()
* Purpose: Set the compatability mode on the CD-I system assuming
* that the images used are 384 actual bytes wide
* Passed: the video device number
* Output: The compatability mode will be set according to the info
* found in the CSD
* Returned: OK or SYSERR
**/
INT setCompMode(vpath)

 int vpath;

{
 CHAR *disp_dev, *disp_param, *csd_devname(), *csd_devparam();
 REG CHAR *dp;
 int device;
 int mode;

 device = (os_version == 1) ? DT_VIDEO : DT_DISPLY;

 if ((disp_dev = csd_devname(device, 1)) == NULL)
 {
 fprintf(stderr,
 "Can't get display devname, errno = 0x%x\n",
 errno);
 return (SYSERR);
 }

 if ((disp_param = csd_devparam(disp_dev)) == NULL)
 {
 fprintf(stderr,
 "Can't get display parameter, errno = 0x%x\n",
 errno);
 return (SYSERR);
 }

16 TN#53 : UVLO Motion-Video Encoding and Decoding

 mode = 1; /* Mode 1 is for 384 width on Monitor
*/
 dp = disp_param;
 while (*dp != '\0')
 { /* If "TV" is in the parameter, its a
TV */
 if (*dp == 'T') /* otherwise it's a Monitor */
 if (*(dp + 1) == 'V')
 {
 mode = 0; /* TVs need mode 0 for 384 wide pix */
 break;
 }

 dp++;
 }

 free(disp_dev); /* Give back memory for csd stuff */
 free(disp_param);
 /* Set appropriate compatability mode
*/
 if (dc_setcmp(vpath, mode) == SYSERR)
 return (error(errno, "Can't reset compatibility mode"));

 return (OK);
}

/***
*
* Function: get_os_version()
* Purpose: Determine the version of CD-RTOS that we are running under.
* Passed:
* Globals: os_version
* Assumes:
* Outputs:
* Returns:
* Author: Ken Ellinwood, August 25, 1989
*
**/
get_os_version()
{

 char *dev_name;
 char *dev_params;
 char *tmpptr;
 int param_len;
 char *rindex();

 /* If anything goes wrong, os_version will be 99 */
 os_version = 99;

 /* Check for device #0, returns NULL under 0.99 */
 if ((dev_name = csd_devname(0, 1)) != NULL)
 {
 /* Get device parameters for #0 */
 if ((dev_params = csd_devparam(dev_name)) == NULL)
 {
 printf("Can't get csd params for %s\n", dev_name);
 free(dev_name);
 exit(0);
 }

 /* Search for the string "1.0" within the device parameters */
 param_len = strlen(dev_params);

TN#53: UVLO Motion-Video Encoding and Decoding 17

 tmpptr = dev_params;

 while (tmpptr != (dev_params + param_len - 2))
 {
 if (strncmp(tmpptr++, "1.0", 3) == 0)
 {

 /* When "1.0" is found, set os_version to one */
 os_version = 1;
 break;
 }
 }

 free(dev_name);
 free(dev_params);
 }
}

18 TN#53 : UVLO Motion-Video Encoding and Decoding

TN#53: UVLO Motion-Video Encoding and Decoding 19

APPENDIX 2: BASE CASE FULL-MOTION VIDEO
SCREEN UTLIZATION

In the AIM evaluation laboratory, we attempted to calculate the maximum
values for screen utilization with base case full-motion video using DYUV,
UVLO, and interpolated data. Because these values are based on theory and not
on actual screen measurements under a variety of conditions, they should be
used as “rule of thumb” values. Your actual screen utilization will probably
approach these values, but will never reach the maximum values stated.
Variables, such as the one-sector granularity of real-time files and the mixing of
audio into your program, create constraints on screen usage. However, we feel
that the values resulting from our calculations will be very useful to you in
planning screen utilization.

The following charts show the percentage of the screen that can be covered by
full-motion video given various coding techniques, frame rates, and bandwidth
utilization. Each chart shows the frame rates on the X axis, bandwidth threshold
values (corresponding to the labeled audio levels) on the Y axis, and the
percentage of the screen that can be covered with full motion video using those
parameters.

DYUV Images

The first chart contains data for normal DYUV images. In the Green Book, this is
the standard image-encoding technique for naturalistic images. It gives the best
image quality available for full-motion video on base-case players. It compresses
the data by throwing out half of the color (UV) information, while retaining all of
the brightness (Y) information, and then it delta codes the result. Since the
human eye is relatively insensitive to color compared to brightness, the resulting
images are perceptually comparable to the quality of RGB images, but with a
substantial reduction in data size.

The second chart contains data for UVLO images. UVLO is a technique related
to DYUV, except that it compresses data further by throwing away even more of
the color information in the horizontal dimension. The disadvantage of UVLO is
the player’s lack of real-time decoding hardware; UVLO is not defined in the
Green Book. Thus, the 680x0 processor must be employed to decode UVLO data
into DYUV at run time. Because this is not a trivial operation, the processor
throughput is almost entirely consumed by UVLO decoding.

The third chart contains data for UVLO combined with a line-interpolation
technique that doubles screen coverage vertically by halving vertical resolution.
At its simplest, such a technique duplicates every line. If there is sufficient
processor throughput after UVLO is decoded, some filtering might be applied to
smooth out the interpolated lines.

20 TN#53 : UVLO Motion-Video Encoding and Decoding

Bandwidth Utilization

 50%
8/16
A

Stereo

75%
12/16

A
Mono

B
Stereo

88%
14/16

B
Mono

C
Stereo

94%
15/16

C
Mono

100%
16/16
No

Audio

30 3 5 6 6 6
25 4 6 7 7 8
24 4 6 7 7 8
15 6 9 11 12 13

Frames per 12.5 8 11 13 14 15
Second 12 8 12 14 15 16

10 9 14 17 18 19
8 12 18 21 22 24
6 16 24 28 30 32

DYUV SCREEN UTILIZATION

(in percent)

Bandwidth Utilization

 50%
8/16
A

Stereo

75%
12/16

A
Mono

B
Stereo

88%
14/16

B
Mono

C
Stereo

94%
15/16

C
Mono

100%
16/16
No

Audio

30 5 7 8 9 10
25 6 9 10 11 11
24 6 9 10 11 12
15 10 14 17 18 19

Frames per 12.5 11 17 20 21 23
Second 12 12 18 21 22 24

10 14 21 25 27 29
8 18 27 31 34 36
6 24 36 42 45 48

UVLO SCREEN UTILIZATION

(in percent)

Bandwidth Utilization

TN#53: UVLO Motion-Video Encoding and Decoding 21

 50%
8/16
A

Stereo

75%
12/16

A
Mono

B
Stereo

88%
14/16

B
Mono

C
Stereo

94%
15/16

C
Mono

100%
16/16
No

Audio

30 10 14 17 18 19
25 11 17 20 21 23
24 12 18 21 22 24
15 19 29 33 36 38

Frames per 12.5 23 34 40 43 46
Second 12 24 36 42 45 48

10 29 43 50 54 57
8 36 54 63 67 72
6 48 72 84 90 96

DYUV SCREEN UTILIZATION

(in percent)

