
 8

OS-9
System

Management
System managers have a range of options to consider. OS-9 allows system managers to tailor their system
to the needs of users by changing system modules, setting up the system defaults, etc. OS-9 also allows
system managers to maximize the performance of their system by using RAM disks, making bootfiles,
making a startup file, etc.

This chapter discusses the following topics of importance to system managers:

• Setting the system defaults using the Init module

• Adding customization modules

• Changing system modules

• Making bootfiles

• Using a RAM disk

• Making a startup file

• Shutting down the system

• Installing OS-9 on a hard disk

• Managing processes in a real-time environment

• Using the tmode and xmode utilities

• Using termcap
Using Professional OS-9 8-1

Setting Up the System Defaults: the Init Module OS-9 System Management
Setting Up the System Defaults: the Init Module

The Init module is sometimes referred to as the configuration module. It is a non-executable module lo-
cated in memory in the OS9Boot file or in ROM. The Init module contains system parameters used to
configure OS-9 during startup. The parameters set up the initial table sizes and system device names. For
example, the amount of memory to allocate for internal tables, the name of the first program to run (usually
either SysGo or shell), an initial directory, etc. are specified. You can examine the system limits in the
Init module at any time.

The values in the Init module’s table are the system defaults. You can change these defaults in two ways.
The first method involves editing the CONFIG macro in the systype.d file. The systype.d file is located
in the DEFS directory. After systype.d is edited, the Init module is remade and placed in the new boot-
file. The second method involves modifying the Init module with the moded utility. Both methods are
discussed later in this chapter. Regardless of the method you use, the changes become the system defaults.

The following is a list of the system defaults listed in the Init module. The term offset refers to the location
of a module field, relative to the starting address of the module. Module offsets are resolved in assembly
code by using the names shown here and linking the module with the relocatable library: sys.l or usr.l .

Offset Name Description
$30 Reserved This field is currently reserved for future use.

$34 M$PollSz Number of Entries in the IRQ Polling Table
This is the number of entries in the IRQ polling table. One entry is re-
quired for each interrupt generating device control register. The IRQ poll-
ing table has 32 entries by default. Each entry in the IRQ polling table is
18 bytes long.

$36 M$DevCnt Device Table Size
This is the number of entries in the system device table. One entry is re-
quired for each device in the system. The system device table has 32 en-
tries by default. Each entry in this table is 18 bytes long.

Offset Name Description
$38 M$Procs Initial Process Table Size

This indicates the initial number of active processes allowed in the system.
If this table becomes full, it automatically expands as needed. By default,
64 active processes are allowed. Each entry in the initial process table
requires 4 bytes.

NOTE: The Init module MUST be present in the system in order for OS-9 to work.+
8-2 Using Professional OS-9

OS-9 System Management Setting Up the System Defaults: the Init Module
$3A M$Paths Initial Path Table Size
This is the initial number of open paths in the system. If this table
becomes full, it automatically expands as needed. By default, 64 open
paths are allowed. Each entry in the initial path table requires 4 bytes.

$3C M$SParam Offset to Parameter String for Startup Module
This is the offset to the parameter string (if any) to be passed to the first
executable module. An offset of zero indicates that no parameter string is
required. The parameter string itself is located elsewhere, usually near the
end of the Init module.

$3E M$SysGo First Executable Module Name Offset
This is the offset to the name string of the first executable module; usually
SysGo or shell.

$40 M$SysDev Default Directory Name Offset
This is the offset to the initial default directory name string; usually /d0 or
/h0. The kernel does a chd and chx to this device prior to forking the ini-
tial device. If the system does not use disks, this offset must be zero.

$42 M$Consol Initial I/O Pathlist Name Offset
This is the offset to the initial I/O pathlist string. This offset usually points
to the /TERM string. This pathlist is opened as the standard I/O path for
the initial process. It is generally used to set up the initial I/O paths to and
from a terminal. This offset should contain zero if no console device is in
use.

Offset Name Description
$44 M$Extens Customization Module Name Offset

This is the offset to a name string of a list of customization modules (if
any). A customization module is intended to complement or change OS-
9’s existing standard system calls. These modules are searched for during
startup. Typically these modules are found in the bootfile. They are exe-
cuted in system state if found. Modules listed in the name string are sep-
arated by spaces. The default name string to be searched for is OS9P2.
If there are no customization modules, set this value to zero.

NOTE: A customization module may only alter the d0, d1, and ccr reg-
isters.

NOTE: Refer to the following section for more information on customi-
zation modules.
Using Professional OS-9 8-3

Setting Up the System Defaults: the Init Module OS-9 System Management
$46 M$Clock Clock Module Name Offset
This is the offset to the clock module name string. If there is no clock
module name string, set this value to zero.

$48 M$Slice Timeslice
The number of clock ticks per timeslice. The number of clock ticks per
timeslice defaults to two.

$4A Reserved This field is currently reserved for future use.

$4C M$Site This is the offset to the installation site code. This value is usually set to
zero. OS-9 does not currently use this field.

$50 M$Instal Offset to Installation Name
This is the offset to the installation name string.

$52 M$CPUTyp CPU Type
CPU type: 68000, 68008, 68010, 68020, 68030, 68040, 68070, or
683XX. The default is 68000.

$56 M$OS9Lvl Level, Version, and Edition
This four byte field is divided into three parts:

level: 1 byte version: 2 bytes edition: 1 byte

For example, level 1, version 2.4, edition 1 would be 1241.

Offset Name Description
$5A M$OS9Rev Revision Offset

This is the offset to the OS-9 level/revision string.

$5C M$SysPri Priority
This is the system priority at which the first module (usually SysGo or
shell) is executed. This is generally the base priority at which all process-
es start. The default is 128.

$5E M$MinPty Minimum Priority
This is the initial system minimum executable priority. The default is
zero. M$MinPty is discussed later in this chapter and in the OS-9
Technical Manual.

$60 M$MaxAge Maximum Age
This is the initial system maximum natural age. The default is zero.
M$MaxAge is discussed later in this chapter and in the OS-9 Technical
Manual.
8-4 Using Professional OS-9

OS-9 System Management Setting Up the System Defaults: the Init Module
$62 Reserved This field is currently reserved for future use.

$66 M$Events Number of Entries in the Events Table
This is the initial number of entries allowed in the events table. If the table
becomes full, it automatically expands as needed. The default is zero.
Each entry in the events table requires 32 bytes. See the OS-9 Technical
Manual for a discussion of event usage. This value is no longer used.

$68 M$Compat Revision Compatibility
This byte is used for revision compatibility. The default is 0. The follow-
ing bits are currently defined:

Bit 0: Set to save all registers for IRQ routines.

Bit 1: Set to prevent the kernel from using stop instructions.

Bit 2: Set to ignore “sticky” bit in module headers.

Bit 3: Set to disable cache burst operation (68030 systems).

Bit 4: Set to patternize memory when allocated or deallocated.

Bit 5: Set to prevent kernel cold-start from starting system
clock.

Offset Name Description
$69 M$Compat2 Compatibility Bit #2

This byte is used for revision compatibility. The following bits are cur-
rently defined:

Bit Function
0 0 External instruction cache is not snoopy*

1 External instruction cache is snoopy or absent
1 0 External data cache is not snoopy

1 External data cache is snoopy or absent
2 0 On-chip instruction cache is not snoopy

1 On-chip instruction cache is snoopy or absent
3 0 On-chip data cache is not snoopy

1 On-chip data cache is snoopy or absent
7 0 Kernel disables data caches when in I/O

1 Kernel does not disable data caches when in I/O

* snoopy = cache that maintains its integrity without software interven-
tion.
Using Professional OS-9 8-5

Setting Up the System Defaults: the Init Module OS-9 System Management
$6A M$MemList Colored Memory List
This is an offset to the memory segment list. The colored memory list
contains an entry for each type of memory in the system. The list is
terminated by a long word of zero. If this field contains a 0, colored
memory is not used in this system. For a complete discussion on colored
memory, see the OS-9 Technical Manual.

$6C M$IRQStk This field contains the size (in longwords) of the kernel’s IRQ stack. The
value must be 0 or between 256 and $ffff. If the value is zero, the kernel
uses a small default IRQ stack. A larger IRQ stack is recommended. The
default value is 256 longwords.

$6E M$ColdTrys This is the retry counter if the kernel’s initial chd to the system device
fails. The default value is zero.

+ Throughout this chapter, the system directories referred to are the defaults found in the Init
module, unless otherwise specified.
8-6 Using Professional OS-9

OS-9 System Management Setting Up the System Defaults: the Init Module
The following is a portion of the distributed init.a file:

_INITMOD equ 1 flag reading init module

CPUTyp set 68000 cpu type (68008/68000/68010)
Level set 1 OS-9 Level One
Vers set 2 Version 2.4
Revis set 3
Edit set 1 Edition
IP_ID set 0 interprocessor identification code
Site set 0 installation site code
MDirSz set 128 initial module directory size (unused)
PollSz set 32 IRQ polling table size (fixed)
DevCnt set 32 device table size (fixed)
Procs set 64 initial process table size (divisible by 64)
Paths set 64 initial path table size (divisible by 64)
Slice set 2 ticks per time slice
SysPri set 128 initial system priority

For more information on the Init module, see the OS-9 Technical Manual.
Using Professional OS-9 8-7

Customization Modules OS-9 System Management
Customization Modules

Customization modules can be attached to OS-9 during the system’s cold-start procedure to increase OS-
9’s functionality and to allow hardware customization such as special bus arbitration modes. While
customization modules extend its capabilities, OS-9 itself is not changed.

NOTE: A customization module may only alter the d0, d1, and ccr registers.

In the Init module, the M$Extens offset points to a list of module names. By default, the name of the list
is OS9P2. If the modules are found during cold-start, they are called. If an error is returned, the system
stops. Two of these modules are listed here:

• Syscache: The syscache module allows the system to enable and control any hardware caches
present. The default syscache module supplied by Microware controls the on-chip cache(s) for
the 68020 and 68030. You can customize this module to take advantage of any external (off-
chip) cache hardware the system may have. The syscache module installs the F$CCtl system
call routines. If the syscache module is not installed, no system caching takes place.

• SSM: The system security module (SSM) allows memory protection. The SSM uses the mem-
ory management unit (MMU) hardware to grant and deny users permission to access memory.
8-8 Using Professional OS-9

OS-9 System Management Changing System Modules
Changing System Modules

The provided system modules are configured to satisfy the needs of the majority of users. However, you
may wish to alter the existing modules or create new modules. You can make new system modules and
alterations to existing system modules by either using the moded utility or changing the defaults in the
systype.d file. The system modules most commonly altered are the device descriptors and the Init
module.

Using the Moded Utility

Use the moded utility to edit individual fields of certain types of OS-9 modules. You can change the Init
module and any OS-9 device descriptor modules with moded.

To use the moded utility, type moded, the name of the desired device descriptor, and any options.

The moded: prompt shows that the editor’s command mode has been entered.

When moded is invoked, it attempts to read the moded.fields file. moded.fields contains module field
information for each type of module to edit. Without this file, moded cannot function.

The provided moded.fields file comes with module descriptions for standard RBF, SBF, SCF, PIPE,
NETWORK, UCM, and GFM module descriptors. It also includes a description for the Init module.

To edit the current module, use the e command. If there is no current module, the editor prompts for the
module name to edit. The editor prints the name of a field, its current value, and prompts for a new value.

You can enter the following edit commands:

Command Description
<expr> A new value for the field
- Re-display last field
. Leave edit mode
? Print edit mode commands
?? Print description of the current field
<cr> Leave current value unchanged

If the definition of any field is unfamiliar, use the ?? command. This provides a short description of the
current field.

Once you have made all necessary changes to the module, exit the edit mode by reaching the end of the
module or by typing a period. At this point, the changes made to the module exist only in memory. To
write the changes to the actual file, use the w command. This also updates the module header parity and
CRC.
Using Professional OS-9 8-9

Editing the Systype.d File OS-9 System Management
NOTE: moded is mainly used for editing existing descriptors. It is somewhat restrictive, and as a result,
if you are building a device descriptor or changing a field such as the file manager names, you may not
want to use moded.

Complete documentation is available for the moded utility in the OS-9 Utilities section.

Editing the Systype.d File

The second method of changing system modules requires editing the systype.d file located in the DEFS
directory. The systype.d file contains macros such as TERM, DiskH0, etc. for each device descriptor
and the Init module. These macros contain basic memory map information, exception vector methods (for
example, vectors in RAM or ROM), I/O device controller memory addresses, and initialization data, etc.
for each device descriptor and the init module.

The systype.d file consists of five main sections that are used when installing OS-9:

• Init module CONFIG macro

• SCF Device Descriptor macros and definitions

• RBF Device Descriptor macros and definitions

• ROM configuration values

• Target system specific definitions

The CONFIG macro is used when creating the Init module to determine six or more system dependent
variables:

Name Description
MainFram MainFram is a character string programs such as login use to print a banner which

identifies the system. You can modify this string.

SysStart SysStart is a character string the OS-9 kernel uses to locate the initial process for
the system. This process is usually stored in a module called SysGo. Two general
versions of SysGo have been provided in the files: SysGo.a for disk-based OS-9
and SysGo_nodisk.a for ROM-based OS-9.

SysParam SysParam is a character string that is passed to the initial process. This usually
consists of a single carriage return.
8-10 Using Professional OS-9

OS-9 System Management Editing the Systype.d File
Name Description
SysDev SysDev is a character string containing the name of the path to the initial system

disk. The kernel coldstart routine sets the initial execution and data directories to
this device prior to forking the SysStart process. Set this label to zero for a ROM-
based system. For example, SysDev set 0.

ConsolNm ConsolNm is a character string that contains the name of the path to the console
terminal port. Messages to be printed during startup appear here.

ClockNm ClockNm is a character string that contains the name of the clock module.

You can set other system parameters in this macro to override the default values created by the init.a
source file. This allows you to perform “system tuning” without modifying the generic init.a file.

The following is a portion of an example systype.d file:

CONFIG macro

 endm
 Slice set 10
 ifdef _INITMOD
 Compat set ZapMem patternize memory
 endc

When editing the Init module, constants may use either values or labels. CPUTyp set 68020 is an exam-
ple of a constant that uses a value. These constants may appear anywhere in the systype.d file. Compat
set ZapMem is an example of a constant that uses a label. These constants must appear outside the CON-
FIG macro and must be conditionalized to be invoked only when init.a is being assembled. If these values
are placed inside the CONFIG macro, the old defaults are still used. If a constant that requires a label is
placed outside the macro and not conditionalized, illegal external reference errors result when making
other files. You can use the _INITMOD label to avoid these errors.
Using Professional OS-9 8-11

Editing the Systype.d File OS-9 System Management
The SCF and RBF device descriptor macro definitions are used when creating device descriptor modules.
Five elements are common to SCF and RBF:

Name Description
Port Port is the address of the device on the bus. Generally, this is the lowest address

that the device has mapped. Port is hardware dependent.

Vector Vector is the vector that is given to the processor at interrupt time. Vector is
hardware/software dependent. Some devices can be programmed to produce
different vectors.

IRQLevel IRQLevel is the interrupt level (1 - 7) for the device. When a device interrupts the
processor, the level of the interrupt is used to mask out lower priority devices.

Priority Priority is the interrupt polling table priority and is software dependent. A non-zero
priority determines the position of the device within the vector. Lower values are
polled first. A priority of zero indicates that the device desires exclusive use of the
vector. OS-9 does not allow a device to claim exclusive use of a vector if another
device has already been installed on the vector, nor does it allow the vector to be
used by another device once the vector has been claimed for exclusive use.

DriverName DriverName is the module name of the device driver. This name is determined by
the programmer and is used by the I/O system to attach the device descriptor to the
driver.

RBF macros may also contain an optional sixth element to describe various standard floppy disk formats.
These values are defined in the file rbfdesc.a in the IO directory.

SCF macros contain two additional elements: Parity and BaudRate. The driver uses these values to
determine the parity, word length, and baud rate of the device. These values are usually standard codes
used by device drivers to access device specific index tables. These codes are defined in the OS-9
Technical Manual.

You should place definitions such as control register definitions that are system specific in systype.d.
This allows you to maintain all system specific definitions in a single, system specific file.

Examine the systype.d file. If it does not accurately describe your system, use any text editor to edit the
appropriate macro(s) in the systype.d file.

After editing the macro, change your data directory to the IO directory. Use the make utility to generate
the required descriptors. For example, the make d0 would generate the descriptors d0 and dd.d0. The
output files are placed in the CMDS/BOOTOBJS directory. Include these new descriptors in the bootfile.

NOTE: For more information on the make utility, refer to the chapter on making files and the make util-
ity description in the OS-9 Utilities section.
8-12 Using Professional OS-9

OS-9 System Management Making Bootfiles
Making Bootfiles

A bootfile contains a list of modules to be loaded into memory during the system’s bootstrap sequence.
The provided bootfiles have been configured to satisfy the majority of users, but you may want to add or
remove modules from an existing bootfile.

Bootlist Files

Bootfiles are usually created using a bootlist file and the -z option of the OS9Gen or TapeGen utilities.
The bootlist files contain a list of files, one file per line, to use in creating the bootfile. Using a bootlist
file is a convenient way to maintain bootfile contents, as the bootlist file can easily be edited.

The bootlist files are usually located in the CMDS/BOOTOBJS directory, along with the individual files
used for constructing the bootfile.

Bootfile Requirements

The contents and module order of a bootfile are usually determined by the end-user’s system configuration
and requirements. However, note the following points when you construct a bootfile:

• The kernel MUST be present in the system, either in ROM or in the bootfile. If the kernel is
in the bootfile, IT MUST BE THE FIRST MODULE.

• The Init module must be present in the system, either in ROM or in the bootfile.

All other modules are dependent upon the system configuration.

Making RBF Bootfiles

To make a bootfile for an RBF device (hard disk or floppy disk), you need to edit the bootlist file to match
your requirements and then run the OS9Gen utility:

chd /h0/cmds/bootobjs
<edit bootlist file>
OS9Gen <device> -z=<bootlist>

The <device> you specify is the disk that you wish to install the bootfile on. If this device is a hard disk,
specify the “format-enabled” device name.
Using Professional OS-9 8-13

Making Bootfiles OS-9 System Management
For example, to make a floppy-disk bootfile, type:

OS9Gen /d0 -z=bootlist.d0

To make a hard disk bootfile, type:

OS9Gen /h0fmt -z=bootlist.h0

NOTE: Some systems may not support boot files that are greater than 64K in length and/or non-contig-
uous.

Making Tape Bootfiles

To make a bootfile for an SBF device (tape), you need to edit the bootlist file to match your requirements
and then run the TapeGen utility:

chd /h0/cmds/bootobjs
<edit bootlist file>
TapeGen /mt0 -bz=bootlist.tape
8-14 Using Professional OS-9

OS-9 System Management Using the RAM Disk
Using the RAM Disk

OS-9 provides support for RAM disks. These disks reside solely in Random Access Memory (RAM). The
information stored on a RAM disk can be accessed significantly faster than the same information stored
on a hard or floppy disk. Any files may be stored and accessed on a RAM disk.

To use a RAM disk, you must have a device descriptor, a RAM disk driver, and the RBF file manager.
You may use multiple RAM disks as long as each RAM disk has a different port address. The only real
limitation to the number of RAM disks is the size of the memory. However, some practical considerations
exist. For example, using one large RAM disk is more efficient than using many small RAM disks.

In many system configurations, a RAM disk is used as the default system device. When the RAM disk is
used as the default system device, it is known as device dd, instead of r0. The name of the device descrip-
tor is dd.r0. Using this descriptor allows compilers to use the RAM disk as a “fast access” device for tem-
porary files, etc. The RAM disk is usually initialized at startup with definition and library files, if it is to
be used as the default system device. The init.ramdisk procedure file provided in the root directory ac-
complishes this.

Volatile RAM disks may be allocated memory either from free system memory or from outside free sys-
tem memory. The number of volatile RAM disks allocated from free system memory is governed by the
port address. There can be up to 1024 different disks, with each disk having a unique address from 0 to
1023.

Volatile RAM disks not allocated from the free system memory must not be part of the system memory
list, and they must have a port address greater than or equal to 1024. This port address indicates the actual
start address of the RAM disk.

A non-volatile RAM disk may not be located in any memory search list known to the system’s general
memory lists. That is, the RAM disk must be “outside” the system’s knowledge. If it is located in a mem-
ory search list known to the system’s general memory lists, the RAM disk may be wiped out because the
memory is assumed to be un-allocated and may later be given to another module. In addition, the format
protect bit must be set for non-volatile RAM disks and the port address must be greater than or equal to
1024.

+ RAM disks may be volatile or non-volatile. A volatile RAM disk disappears when the sys-
tem is reset or the power is shut off. A non-volatile RAM disk resides in a place such as
battery backed up RAM and does not disappear when the system is reset or powered down.
Using Professional OS-9 8-15

Making a Startup File OS-9 System Management
Making a Startup File

Using bootfiles is not the only way of loading modules and devices into memory at the time of startup. A
startup procedure is executed each time OS-9 is booted and the standard SysGo is used. On disk-based
systems, the startup procedure executes a startup file. The startup file is located in the root directory of
the system disk.

While some modules and devices, such as the kernel, should be loaded from the bootlist file, loading most
modules and devices from the startup file can be advantageous. For example, it is easier to upgrade a
system by adding modules to the startup file, or the files contained in the startup file. To change these
files, you simply use a text editor and make the changes. To change the bootlist file, you must also use
the os9gen utility.

Remember: A procedure file is made up of executable commands. Each command is executed exactly
as if it were entered from the shell command line. Each line that begins with an asterisk (*) is a comment
and is not executed.

From the root directory, you can examine the startup file by entering:

$ list startup

A listing similar to the following is displayed:

-t -np
*
* OS-9
* Copyright 1984 by Microware Systems Corporation
*
* The commands in this file are highly system dependent and should
* be modified by the user.
*
* setime ; * start system clock
link shell cio ; * make "shell" and "cio" stay in memory
load math ; * load math module
* iniz r0 h0 d0 t1 p1 ; * initialize devices
* load -z=sys/loadfile ; * make some utilities stay in memory
* load bootobjs/dd.r0 ; * get default device descriptor
* init.ramdisk>/nil >>/nil & ; * initialize it if its the ramdisk
* tsmon /t1 & ; * start other terminals
list sys/motd

The first executable line, -t -np, turns on the talk mode option of the shell and turns off the OS-9 prompt
option for the duration of this procedure. The talk mode option echoes each executed command to the ter-
minal display. This allows you to see what commands are being executed.

The startup file is an OS-9 procedure file. It contains OS-9 commands to be executed
immediately after booting the system.+
8-16 Using Professional OS-9

OS-9 System Management Initializing Devices
The other executable lines in the distributed startup file are followed by a comment explaining the purpose
of the command. Some standard commands are provided as comments. If you want the command exe-
cuted during the startup procedure, use a text editor to remove the asterisk preceding the command.

For example, to execute the setime command when the startup file is executed, remove the asterisk pre-
ceding the command.

NOTE: For systems with battery backed clocks, run setime to start time-slicing, but use the -s option.
The date and time will be read from the clock.

Initializing Devices iniz r0 h0 d0 t1 p1

The iniz r0 h0 d0 t1 p1 commented command initializes the following specific devices:

r0 RAM Disk
h0 Hard Disk
d0 Floppy Disk
t1 Terminal
p1 Serial Printer

Whenever OS-9 opens a path to a device, it first checks to see if the device is known to OS-9. To be
known, a device must be initialized and memory must be allocated for its device driver. If the device is
unknown at the time of the request, OS-9 initializes the device, allocates memory, and opens the path. For
example, a simple dir /d0 command initiates this sequence of events if d0 has not been previously initial-
ized.

The iniz utility initializes devices. iniz performs an I$Attach system call on each device name passed to
it. This initializes and links the device to the system.

To initialize a device after the system has been started, type iniz and the name(s) of the device(s) to attach
to the system. iniz goes through the procedure of initializing the device(s) and allocating the memory
needed for the device. If the device is already attached, it is not re-initialized, but the link count is incre-
mented.

For example, to increment the link count of modules, t2 and t3, type:

$ iniz t2 t3

You can read the device names from standard input with the -z option or from a file with the -z=<file>
option. To increment the link counts of devices listed in a file called /h0/add.files, type:

iniz -z=/h0/add.files
Using Professional OS-9 8-17

Loading Utilities Into Memory OS-9 System Management
You can use the deiniz utility to close a path to a device. deiniz checks the link count before removing
the device from storage. If the link count is greater than one, deiniz lowers the link count. If the link count
is one, deiniz lowers the link count, making it zero, and removes the device from the system device table.
The device then becomes unknown to OS-9.

To use the deiniz utility, type deiniz followed by the name(s) of the devices(s) to be removed from the
system.

For example, to decrement the link count of module p2, type:

$ deiniz p2

deiniz can read the device names from standard input with the -z option or from a file with the -z=<file>
option. To remove the files listed in a file called /h0/not.needed, type:

$ deiniz -z=/h0/not.needed

NOTE: Non-sharable devices must be placed in a bootfile to become known to the system. If a non-shar-
able device is iniz-ed, it is unusable because the link count will have been incremented, causing it to appear
to be in use.

iniz-ing the connected device at startup initializes the device and allocates memory for its driver for the
duration of the time that the system is running, unless specifically deiniz-ed. For example, a system with
two floppy drives and one hard disk would iniz these devices in the startup file:

iniz h0 d0 d1 t1 p1 p

NOTE: For more information on the iniz and deiniz utilities, refer to the OS-9 Utilities section.

Loading Utilities Into Memory load -z=sys/loadfile

The next line of the startup file loads a number of utilities into memory. If a utility is not already in mem-
ory, it must be loaded into memory before it is used. Pre-loading basic utilities at startup time avoids the
necessity of loading the utility each time it is executed.

To load utilities into memory at startup, you must create a file containing the names of each utility to load,
one utility per line. While the file may have any desired name, Microware recommends loadfile for obvi-
ous reasons. This file can be located in any directory as long as you specify its location on the command
line. If loadfile were located in the SYS directory, the startup file command line is:

This initialize/de-initialize sequence can result in slower execution of programs and could
cause memory fragmentation problems. To avoid these symptoms, Microware recommends
that all devices connected to the system at startup be iniz-ed in the startup file.

+

8-18 Using Professional OS-9

OS-9 System Management Loading Utilities Into Memory
load -z=sys/loadfile

Previous versions of the Professional OS-9 package had the following commented line in the startup file:

load utils

This method involved creating a utils file by merging the desired utilities into a single file in the commands
directory. While this method may still be used, using loadfile is preferable because it uses less disk space
and is easier to edit.

Loading the Default Device Descriptor load bootobjs/dd.r0

Many OS-9 compilers and application programs look for definition files and libraries in directories located
on the default system device. The default system device is known as dd. dd may be defined as any disk
device, but it is usually synonymous for one of the following devices:

r0 RAM Disk
h0 Hard Disk
d0 Floppy Disk

If a default device is to be used (dd) and the device descriptor is not in the bootfile, then you must load the
device descriptor. The next line in the startup file loads the device descriptor. The default device is the
RAM disk named r0. If you want another device to be the default device descriptor, change the .r0
extension to reflect the appropriate device. If you have a dd device in your bootfile or if no default device
is to be used, leave this line as a comment.
Using Professional OS-9 8-19

Multi-User Systems OS-9 System Management
Initializing the RAM Disk init.ramdisk>/nil >>/nil &

If you are going to use the RAM disk, a library and definition file structure may be built on the RAM disk.
The next line in the startup file executes the init.ramdisk procedure file. init.ramdisk is located in the
root directory. It sets up LIB and DEFS directories on /dd. To name the RAM disk /r0, you must change
a single line in init.ramdisk; change chd /dd to chd /r0.

NOTE: RAM disks are discussed elsewhere in this chapter.

Multi-User Systems tsmon /t1 &

The tsmon utility is used to make your system a multi-user system. This utility supervises idle terminals
and initiates the login procedure for multi-user systems. The startup file command line: tsmon /t1& ini-
tiates the time-sharing monitor on the serial port /t1.

tsmon can monitor up to 28 device name pathlists. Therefore, if you have multiple devices for tsmon to
monitor, you can specify up to 28 devices on each tsmon command line. You can use the ex built-in shell
command to execute tsmon without creating another shell. This conserves system memory. For example:

ex tsmon term t1 t2 t3 t4 t5&

When a carriage return is typed on any of the specified paths, tsmon automatically forks login and stan-
dard I/O paths are opened to the device.

The login procedure uses the password file located in the SYS directory for individual login validation.
The provided password file has two example login entries. Each of the fields in an entry in the password
file is explained in the chapter on the shell and in the login utility description in the OS-9 Utilities section.
If login fails because you could not supply a valid user name or password, control returns to tsmon.

For more information on the tsmon utility, refer to the OS-9 Utilities section.
8-20 Using Professional OS-9

OS-9 System Management System Shutdown Procedure
System Shutdown Procedure

There will be times when, for one reason or another, you want to bring your system down. When you reset
or power down your system, you may need to do more than just press the reset button. Certain programs
need to be shut down gracefully. For example, most network communications, print spoolers, and inter-
system processes need special attention. These processes may have options or other arrangements that
need to be considered before shutting down your system.

In addition to taking care of processes that require special attention, you should prepare the system’s users
for the shutdown. If at all possible, allow users enough time to save their files and get off the system. One
way of alerting users that the system is going down is by echoing a message using the echo and tee
utilities. However, you should realize that messages sent over the system in this manner will not be seen
by users who do not press a carriage return after the message has been sent. For example, if a programmer
is sitting at a shell prompt, the message will not appear on the terminal screen until a carriage return is
entered.

You can simplify the process of actually shutting down your system by creating a procedure file. Once
created, you can run the procedure either from the shell command line prompt or you can create a separate
password entry for the sole purpose of shutting down the system.

For example, if you have a procedure file called shutdown.sys, you could create the following password
file entry:

sys,shutdown,0.0,128,.,sys,shell shutdown.sys

Once you login as user sys with password shutdown, the shut down procedure begins because the system
immediately has the shell execute the shutdown.sys file.

In this case, verbal warnings are important. This means that in addition to sending a warning
message out over the system, you may want to use either an intercom system or the telephone
to talk to each person connected to the system.

+

Using Professional OS-9 8-21

System Shutdown Procedure OS-9 System Management
The following is an example of a useful procedure file for shutting down the system:

-t -nx -np
*
* System Shutdown Procedure
*
echo WARNING The system will shut down in 3 minutes ! tee /t1 /t2 /t3 /t4 /t5
sleep -s 60
echo WARNING The system will shut down in 2 minutes ! tee /t1 /t2 /t3 /t4 /t5
sleep -s 115
echo WARNING 5 seconds to system shut down ! tee /t1 /t2 /t3 /t4 /t5
sleep -s 5
spl -$; * terminate spooler
nmon /n0 -d ; * shutdown network
sleep -s 3 ; * wait 3 seconds
break ; * call ROM debugger

The first six commands after the comment identifying the function of the procedure broadcast three warn-
ings to the terminals on the system. The first warning tells the users that the system is going down. The
other two warnings serve as reminders. Remember that you should also give verbal warnings.

The remaining command lines shut down the system:

spl -$ This command terminates the spooler. All unfinished jobs are lost when the spooler
is terminated.

nmon /n0 -d This command brings the network down. Users from other networks will no longer
be able to login to the system being shut down.

sleep -s 3 This command causes the system to wait three seconds before executing the next
command line. This allows the previous commands time to complete execution.

break This command sends a break call to the ROM debugger. When the ROM debugger
receives this call, the system shuts down.
8-22 Using Professional OS-9

OS-9 System Management Installing OS-9 On a Hard Disk
Installing OS-9 On a Hard Disk

Once you have brought up the system and tested its basic operations, install OS-9 on the hard disk and use
it as the system boot device. Installing the distribution software on the hard disk involves five steps:

• Checking the hard disk device descriptor

• Formatting the hard disk

• Copying the distribution software on to the hard disk

• Making the hard disk the system boot disk

• Test-booting from the hard disk

Checking the Hard Disk Device Descriptor

The installed hard disk may not necessarily match the parameters in the provided /h0 and /h0fmt device
descriptors. For example, the number of cylinders, heads, etc. for your hard disk may be different than the
default parameters specified in the device descriptors. Before attempting to use the hard disk, carefully
examine the disk macros in systype.d.

If the parameters match the drive in use, the supplied descriptors will work. If not, edit systype.d and
remake the descriptors or use the moded utility to remake the descriptors. The moded utility
makes/changes any device descriptor module and updates its CRC.

Once the descriptors are made, make a new bootfile with the new descriptors replacing the old ones.

Formatting the Hard Disk

Once the descriptors match the type of drive in use, format the hard disk. Formatting the hard disk builds
an OS-9 file structure on the media and tests the media for defective areas. Any new descriptors are also
checked.

WARNING: If you have any vital information such as data or programs on this disk,
you should perform backups to floppy or tape of this information. The format process
completely erases any data on the disk.!
Using Professional OS-9 8-23

Copying the Distribution Software on to the Hard Disk OS-9 System Management
To turn off page pause and format the hard disk, enter:

$ tmode nopause
$ format /h0fmt -c=<cluster size>

NOTE: /h0fmt must be the device name, as /h0 is format protected. Use the -c option for large drives
only.

The format utility asks whether you want to perform a physical format and a physical verify. Answer y
to both questions. The physical format operation is a lengthy process. The larger your hard disk is, the
longer you can expect to wait. The logical verify reads each cluster from the disk.

Copying the Distribution Software on to the Hard Disk

Once the hard disk has been formatted correctly, use the dsave utility to copy the distribution software on
to the hard disk.

To copy the distribution files:

¿ Insert the first system disk in drive /d0. The first system disk contains the CMDS directory.

¡ Change your current data directory to /d0:
 $ chd /d0

¬ Copy all files from /d0 to /h0:
$ dsave -eb50 /h0

If you have more than one floppy disk to copy:

Ð Remove the disk in /d0 and replace it with the new disk to copy.

ƒ Change your execution directory to /h0/CMDS:

$ chx /h0/cmds

The hard disk is now your current execution directory.

Ý Copy all files from /d0 to /h0:
$ dsave -eb50 /h0

Repeat this step until all floppy disks have been copied to the hard disk.

NOTE: The first disk copied to the hard disk is the distribution disk containing the CMDS directory.

Making the Hard Disk the System Boot Disk

Copying files on to the hard disk installs the software on the hard disk. It does not make the hard disk a
bootable disk. To make the hard disk the system boot disk, use the os9gen utility.
8-24 Using Professional OS-9

OS-9 System Management Test Booting from the Hard Disk
The OS9Boot file is distributed with your system software. An OS9Boot.h0 bootfile may also be includ-
ed. The only difference between these files is the default system device name string in the Init module.
OS9Boot refers to /d0, while OS9Boot.h0 refers to /h0.

Assuming that these files have been copied on to the hard disk, do the following to make the hard disk
bootable:

¿ Change your current data directory to /h0:
$ chd /h0

¡ Rename OS9Boot to retain a copy to use with a floppy system:
$ rename OS9Boot OS9Boot.d0

¬ Make the hard disk bootable with the correct bootfile. NOTE: You must specify /h0fmt as
the device.

$ os9gen /h0fmt OS9Boot.h0

Test Booting from the Hard Disk

Once you have completed the above steps, test that the system actually boots from the hard disk.

If the system fails to boot correctly, reboot the system. Carefully examine the results of the actions
previously described.
Using Professional OS-9 8-25

Managing Processes in a Real-time Environment OS-9 System Management
Managing Processes in a Real-time Environment

The ability to manage processes in a real-time environment is one of OS-9’s advantages. OS-9 has three
main methods by which system managers can manage processes in a real-time environment:

• Manipulating process’ priority

• Using D_MinPty and D_MaxAge to alter the system’s process scheduling

• Having system state processes and user state processes

Manipulating Process’ Priority

When you execute processes on the command line, you can change their initial priorities using the process
priority modifiers discussed in the chapter on the shell. This allows you to set the priority on crucial tasks
higher so that they run sooner and more often than processes that are less crucial.

NOTE: The initial priority is also a parameter for the fork and chain system calls.

Using D_MinPty and D_MaxAge to Alter the System’s Process Scheduling

The way OS-9 schedules processes can be affected by the D_MinPty and D_MaxAge system global vari-
ables. D_MinPty and D_MaxAge are available to super users through the F$SetSys system call. These
system variables can be used to effect the aging of processes. Remember: A process’ initial priority is
aged each time it is passed by for execution while it is waiting for CPU time.

D_MinPty defines a minimum priority below which processes are neither aged nor considered candidates
for execution. Processes with priorities less than D_MinPty remain in the waiting queue and continue to
hold any system resources that they held before D_MinPty was set.

If you have a critical process that needs to be run and several other users have processes that they want to
run, use the process priority modifier to increase the priority of the critical process. Then, set D_MinPty
to a value that is less than the priority you assigned to the critical process but greater than the priority of
the other processes. The critical process now continues using the CPU until another process with a priority
greater than D_MinPty is entered into the waiting queue or the critical process is finished.

For example, if D_MinPty is set to 500 and you set the priority of your process at 600, your process con-
tinues to use the CPU while processes with priorities less than 500 cannot run until D_MinPty is reset.

D_MinPty is usually set to zero. All processes are eligible for aging and execution
when this value is set to zero because all processes have an initial priority greater than
zero.

+

8-26 Using Professional OS-9

OS-9 System Management Using System-State Processes and User-State Processes
CAVEAT: D_MinPty is potentially dangerous. If the minimum system priority is set above the priority
of all running tasks, the system will completely shut down and can only be recovered by a reset. It is cru-
cial to restore D_MinPty to zero when the critical task finishes or to reset D_MinPty or a process’ priority
in an interrupt service routine.

When set, D_MaxAge essentially divides tasks into two classes: low priority and high priority. A low
priority task is any task with a priority below D_MaxAge. Low priority tasks continue aging until they
reach the D_MaxAge cutoff, but they are not executed unless there are no high priority tasks waiting to
use the CPU.

A high priority task is any task with a priority above D_MaxAge. A high priority task will receive the
entire available CPU time, but it will not be aged. When the high priority task(s) are inactive, the low pri-
ority tasks are run.

For example, if D_MaxAge is set to 2000 and three processes with initial priorities of 128 are in the active
queue, the processes run just as if D_MaxAge had not been set. Then, if a process with an initial priority
of 2500 is entered into the active queue, it receives CPU time when the process currently in the CPU has
finished. Once using the CPU, the high priority process runs uninterrupted until a process with a higher
priority enters the active queue or the process finishes. When the process finishes executing, the low pri-
ority processes will again be able to use the CPU.

NOTE: Any process performing a system call is not pre-empted until the call is finished, unless the pro-
cess voluntarily gives up its timeslice. This exception is made because these processes may be executing
critical routines that affect shared system resources and could be blocking other unrelated processes.

Using System-State Processes and User-State Processes

The second method that OS-9 uses to manage real-time priority processing is the existence of system-state
processes. System-state processes are processes running in a supervisor or protected mode. System-state
processes basically have unlimited access to system memory and other resources. When a process in sys-
tem state wants to use the CPU, it waits until it has the highest age. Once it is available to use the CPU, a
process in system state runs until it finishes instead of running for a specified timeslice.

Processes that are in user state do not have access to all points in memory and do not have access to all of
the commands. When a process in user state gains time in the CPU, it runs only for the time specified by
the timeslice. When it finishes using its timeslice, it is entered back in the waiting queue according to its
initial priority.

D_MaxAge defines a maximum age over which processes are not allowed to mature. By
default, this value is set to zero. When D_MaxAge is set to zero, it has no effect on the
processes waiting to use the CPU.

+

Using Professional OS-9 8-27

Using the Tmode and Xmode Utilities OS-9 System Management
Using the Tmode and Xmode Utilities

The tmode and xmode utilities are also available to help you customize OS-9. Use the tmode utility to
display or change the operating parameters of the user’s terminal. tmode affects open paths, not the device
descriptor itself, so the changes made by it are temporary. The changes made by tmode are inherited if
the paths are duplicated, but not if the paths are opened explicitly.

The xmode utility is similar to tmode. Use xmode to display or change the initialization parameters of
any SCF-type device such as a video display, printer, RS-232 port, etc. xmode actually updates the device
descriptor. The change persists as long as the computer is running even if paths to the device are
repetitively opened and closed. Some common uses of xmode are to change the baud rates and control
definitions.

In SSM systems, you must have write permission for the descriptor module in order for xmode to work.
You can use the fixmod utility to change the permissions.

NOTE: tmode and xmode work only on SCF and GFM devices.

Using the Tmode Utility

To use the tmode utility, type tmode and any parameter(s) to change. If you give no parameters, the
present values for each parameter are displayed. Otherwise, the parameter(s) given on the command line
are processed. You can give any number of parameters on a command line. Use spaces or commas to
separate each parameter.

If a parameter is set to zero, OS-9 no longer uses the parameter until it is re-set to a code OS-9 recognizes.
For example, the following command sets xon and xoff to zero:

tmode xon=0 xoff=0

Consequently, OS-9 will not recognize xon and xoff until the values are re-set.

To re-set the values of a parameter to their default as given in this manual, specify the parameter with no
value.

Use the -w=<path#> option to specify the path number affected. If a path number is not provided,
standard input is affected.

NOTE: If you use tmode in a shell procedure file, you must use the -w=<path#> option to specify one
of the standard paths (0, 1, or 2) to change the terminal’s operating characteristics. The change remains in
effect until the path is closed. To effect a permanent change to a device characteristic, you must change
the device descriptor. You may alter the device descriptor to set a device’s initial operating parameters
using the xmode utility.
8-28 Using Professional OS-9

OS-9 System Management Using the Tmode and Xmode Utilities
Five parameters need driver support in order to be changed by tmode: type, par, cs, stop, and baud. If
you try to change these parameters without driver support, tmode has no effect.

The tmode parameters are documented in the OS-9 Utilities section.

Using the Xmode Utility

To use the xmode utility, type xmode and any parameter(s) to change. If you give no parameters, the
present values for each parameter are displayed. Otherwise the parameter(s) given on the command line
are processed. You can give any number of parameters on a command line. Use spaces or commas to
separate each parameter. You must specify a device name if the given parameter(s) are to be processed.

Like tmode, if a parameter is set to zero, the device no longer uses the parameter until it is re-set to a rec-
ognizable code. To re-set the values of parameters to their default, specify the parameter with no value.
This re-sets the parameter to the default value as given in this manual.

Five parameters require further explanation: type, par, cs, stop, and baud. xmode changes these pa-
rameters only if the device is iniz-ed directly after the xmode changes and the driver supports these chang-
es. Changing these parameters is usually done in the startup file or by first deiniz-ing a file. For example,
the following command sequence changes the baud rate of /t1 to 9600:

$ deiniz t1
$ xmode /t1 baud=9600
$ iniz t1

This type of command sequence changes the device descriptor and initializes it on the system. Only the
five parameters mentioned above need this special sequence to be changed. All other xmode parameters
are changed immediately.

xmode’s parameters are documented in the OS-9 Utilities section.
Using Professional OS-9 8-29

The Termcap File Format OS-9 System Management
The Termcap File Format

The termcap file is a text file that contains control code definitions for one or more types of terminals.
Each entry is a complete description list for a particular kind of terminal.

The first section of a termcap entry is divided into three parts.

• A two character entry

• The most common name

• A long name

Each part is a different way of naming the terminal. A | character separates the parts of a termcap entry.
The first part is a two character entry. This is a holdover from early UNIX editions. The second part is
the most common name for the terminal. This name must contain no blanks. The final part is a long name
fully describing the terminal. This name may contain blanks for readability. For example:

kh|abm85h|kimtron abm85h:

The TERM environment variable must be set to the name used in the second part of the name section. In
the following example, TERM is set to abm85h:

$ setenv TERM abm85h

NOTE: You can check the values stored in TERM by using the printenv command:

$ printenv
TERM=abm85h

The rest of the entry consists of a sequence of control code specifications for each control function. Use
a colon (:) character to separate each item in the list. You can continue an entry on to the next line by using
a backslash (\) character as the last character of the line. It must appear after the last colon of the previous
item. The next line must begin with a colon. For example:

ka|amb85|kimtron abm85:\
:ct=\E3: ...

Each item begins with a terminal capability. Each capability is a two character abbreviation. Each
capability is either a boolean itself or it is followed by a string or a number. If a boolean capability is
present in the termcap entry, then the capability exists on that terminal.
8-30 Using Professional OS-9

OS-9 System Management The Termcap File Format
All numeric capabilities are followed by a pound sign (#) and a number. For example, the number of col-
umns capability for an 80 column terminal could be described as follows:

co#80:

All string capabilities are followed by an equal sign (=) and a character string. You can enter a time delay
in milliseconds directly after the equal sign (=) if padding is allowed in that capability. The padding char-
acters are supplied by tputs() after the remainder of the string is transmitted to provide the time delay. The
time delay may be either an integer or a real. The time delay may be followed by an asterisk (*). The
asterisk specifies that the padding is proportional to the number of lines affected.

NOTE: It is often useful to specify the time delay using the real format. For example, the clear screen
capability is specified as ^z with a time delay of 3.5 milliseconds by the following entry:

cl=3.5*^z:

Escape sequences may be indicated by an \E to indicate the escape character. A control character is
indicated by a circumflex (^) preceding the character. The following special character constants are
supported:

\b Backspace ($08)
\f Formfeed ($0C)
\n Newline ($0A)
\r Return ($0D)
\t Tab ($09)
 \\ Backslash ($5C)
\^ Circumflex ($5E)

Characters may be specified as three Octal digits after a backslash (\). For example, if a colon must be
used in a capability definition, it must be specified by \072. If it is necessary to place a null character in
a capability definition use \200. C routines using termcap strip the high bits of the output, therefore \200
is interpreted as \000.
Using Professional OS-9 8-31

Termcap Capabilities OS-9 System Management
Termcap Capabilities

The following is a list of termcap capabilities recognized by termcap. Not all of these capabilities need to
be present for most programs to use termcap. They are provided for completeness. (P) indicates that pad-
ding may optionally be specified. (P*) indicates that the optional padding may be based on the number of
lines affected:

Name Type Padding Description
ae string (P) End alternate character set

al string (P*) Add new blank line

am boolean End alternate character set

as string (P) Start alternate character set

bc string Backspace if not ^H

bs boolean Terminal can backspace with ^H

bt string (P) Back tab

bw boolean Backspace wraps from column 0 to last column

CC string Command character in prototype if terminal settable

cd string (P*) Clear to end of display

ce string (P) Clear to end of line

ch string (P) Horizontal cursor motion only, line stays some

cl string (P*) Clear screen

cm string (P) Cursor motion

co numeric Number of columns in line

cr string (P*) Carriage return (default ^M)

cs string (P) Change scrolling region (VT100), like cm

cv string (P) Vertical cursor motion only

da boolean Display may be retained above

dB numeric Number of milliseconds of backspace delay needed

db boolean Display may be retained below

dC numeric Number of milliseconds of carriage return delay needed

dc string (P*) Delete character

dF numeric Number of milliseconds of formfeed delay needed

dl string (P*) Delete line
8-32 Using Professional OS-9

OS-9 System Management Termcap Capabilities
Name Type Padding Description
dm string Delete mode (enter)

dN numeric Number of milliseconds of newline delay needed

do string Down one line

dT numeric Number of milliseconds of tab delay needed

ed string End of delete mode

ei string End insert mode NOTE: If ic is used, enter :ec=:

eo string Can erase overstrikes with a blank

ff string (P*) Hardcopy terminal page eject (default ^L)

hc boolean Hardcopy terminal

hd string Half-line down (1/2 linefeed)

ho string Home cursor (if no cm)

hu string Half-line up

hz string Hazeltime: cannot print tildas (~)

ic string (P) Insert character

if string Name of file containing initialization string

im boolean Insert mode (enter).
NOTE: If ic is specified use :im=:

in boolean Insert mode distinguishes nulls on display

ip string (P*) Insert pad after character inserted

is string Terminal initialization string

k0-k9 string Sent by other function keys 0-9

kb string Sent by backspace key

kd string Sent by down arrow key

ke string Take terminal out of keypad transmit mode

kh string Sent by home key

kl string Sent by left arrow key

kn numeric Number of other keys

ko string Termcap entries for other non-function keys

kr string Sent by right arrow key

ks string Put terminal in keypad transmit mode

ku string Sent by up arrow key
Using Professional OS-9 8-33

Termcap Capabilities OS-9 System Management
Name Type Padding Description
l0-l9 string Labels on other function keys

li numeric Number of lines on screen or page

ll string Last line, first column (if no cm entry)

ma string Arrow key map

mi boolean OK to move while in insert mode

ml string Memory lock on above cursor

ms boolean OK to move while in standout and underline mode

mu string Turn off memory lock

nc boolean Carriage return down not work

nd string Non-destructive space

nl string (P*) Newline character

ns boolean Terminal is a non-scrolling CRT

os boolean Terminal overstrikes

pc string Pad character (rather than null)

pt boolean Has hardware tabs

se string End stand out mode

sf string (P) Scroll forwards

sg numeric Number of blank characters left by se or so

so string (P) Begin stand out mode

sr string (P) Scroll reverse

ta string Tab (other than ^I or without padding)

tc string Entry of terminal similar to last termcap entry

te string String to end programs that use cm

ti string String to begin programs that use cm

uc string Underscore one character and move past it

ue string End underscore mode

ug numeric Number of blank characters left by us or ue

ul boolean Terminal underlines but doesn’t overstrike

up string Upline (cursor up)

us string Start underscore mode
8-34 Using Professional OS-9

OS-9 System Management Termcap Capabilities
Name Type Padding Description
vb string Visible bell

ve string Sequence to end open/visual mode

vs string Sequence to start open/visual mode

xb boolean Beehive terminal (f1=<esc>, f2=^C)

xn boolean Hewline is ignored after wrap

xr boolean Return acts like ce \r\n

xs boolean Standout not erased by writing over it

xt boolean Tabs are destructive

Of the capabilities, the most complex and important capability is cm: cursor addressing. The string spec-
ifying the cursor addressing is formatted similar to the C function: printf(). It uses % notation to identify
addressing encodings of the current line or column position. The line and the column being addressed
could be considered the arguments to the cm string. All other characters are passed through unchanged.
The following is the notation used for cm strings:

%d a decimal number (origin 0)

%2 same as %2d

%3 same as %3d

%. ASCII equivalent of value

%+x adds x to value, then %

%>xy if value > x adds y, no output

%r reverses the order of row and column, no output

%i increments line/column (for 1 origin)

%% gives a single %

%n exclusive or row and column with 0140

%B BCD (16*(x/10) + (x%10), no output

%D reverse coding (x-2*(x%16)), no output

The following examples illustrate the use of the preceding notations:

cm=6\E&%r%2c%2Y: This terminal needs a 6 millisecond delay, rows and columns reversed,
and rows and columns to be printed as two digits. The <esc>& and Y
are sent unchanged. (HP2645)
Using Professional OS-9 8-35

Example Termcap Entries OS-9 System Management
cm=5\E[%i%d;%dH: This terminal needs a 5 millisecond delay, rows and columns separated
by a semicolon (;), and because of its origin of 1, rows and columns are
incremented. The <esc>[, ; and H are transmitted unchanged. (VT100)

 cm=\E=%+ %+ : This terminal uses rows and columns offset by a blank character.
(ABM85H)

Example Termcap Entries

 ka|abm85|kimtron abm85:\
:ce=\ET:cm=\E=%+ %+ :cl=^Z:\
:se=\Ek:so\Ej:up=^K:sg#1

If two entries in the same termcap file are very similar, one can be defined as identical to the other with
certain exceptions. To do this, tc is used with the name of the similar terminal. This capability must be
the last in the entry. All exceptions to the other terminal must appear before the tc listing. If a capability
must be cancelled, use <cap>@. For example, this might be a complete entry:

 kh|abm85h|kimtron abm85h:\
:se=\EG0:so\EG4:tc=abm85:

End of Chapter 8
8-36 Using Professional OS-9

OS-9 System Management NOTES
NOTES
Using Professional OS-9 8-37

