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MULTI-TASKING

a . « Multi-tasking is very important in real time applications, and 
is essential for multi-user systems. Although traditionally 

BfauV these uses have required very different operating systems, the 
multi-tasking features of OS-9 are suited to both without 

compromise or limitation. Microware have designed a simple and very 
elegant scheduling algorithm that is quick to execute, gives great flexibility, 
but is very easy to use. The default method of operation gives a prioritized 
automatic "round robin" scheduler, but a number of options are available to 
alter the behaviour of the scheduler. In the most extreme case, the scheduler
can be made to operate in a purely hierarchical prioritized mode, such as is 
commonly found in simple real time kernels.

9.1 OS-9 PROCESS SCHEDULING
All of the process scheduling features of OS-9 are in the kernel module. The 
aim of the scheduler is to permit multiple processes (tasks) to be requesting 
processor time, and to divide up the processor time between them. To do this, 
OS-9 maintains a linked list of the processes that are requesting processor 
time, known as the "active queue". Each such process will eventually get some 
processor time, unless one of the pre-emptive features of the scheduler is in 
use. An important aspect of the OS-9 scheduler is the concept of the "current 
process". The current process is the process that is actually running now 
(except for the execution of interrupt service routines). The current process 
is not in the active queue. It is known because the System Globals field 
D_Proc points to its process descriptor. Therefore the active queue is the list 
of processes that want processor time, but are not currently receiving it.
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Processes not in the active queue are not run by the scheduler. A process 
must be moved to the active queue to be requesting processor time. A process 
can only cease to be active by its own request, such as a "wait for event" or a 
"sleep" (which may be executed from within a system call, such as an I/O 
call), or if the process is terminated by the kernel in response to a "kill" 
signal, or a hardware-exemption, or a signal received by a process that has not 
installed a signal handleriroutine. A process is put in the active queue when 
it is first forked (unless it is forked for debugging), when it receives a signal, 
or when the condition it is waiting for (such as an event) occurs. This is the 
function of the F$AProc system call.

Scheduling can use the automatic (time-slicing) scheduler, or the 
pre-emption mechanisms described below, or a mixture. The main work of 
the scheduler is carried out when a process is put in the active queue. The 
scheduler must decide at what position within the linked list to insert the 
new process. As described below, this is done in such a way that the next 
process to execute is always at the head of the queue. Therefore when the 
time comes to switch processes (a task switch), the decision of which process 
to make the current process is a very simple one. The kernel removes the 
first process in the queue from the linked list, and makes it the current 
process. This is the function of the F$NProc system call.

A process switch (call to F$NProc) is only carried out when the current 
process makes a system call that suspends it (such as a sleep request, perhaps 
from within a device driver), or the current process dies, or the processor 
descriptor of the current process is marked as "timed out" when the 
operating system is about to return to user state (to continue execution of the 
current process) after a system call or an interrupt. In this last case, the 
current process is inserted into the active queue exactly as if it had just 
become active, before the first process in the queue is removed from the 
queue to become the current process. It is therefore possible for the same 
process to become the current process again, for example if the process has a 
high priority. Note that if the active queue is empty (the current process is 
the only active process), the kernel does not waste time re-inserting the 
process in the active queue - it ignores the "time out".

The tick routine of the kernel is called on each clock tick interrupt. It 
decrements the D_Slice field of the System Globals, which contains the 
number of ticks remaining in the time slice of the current process. If this 
field is now zero, the time slice of the current process has finished. The 
kernel sets the "timed out" flag (bit 5 of P$State) in the process descriptor of 
the current process. It also resets D_Slice to one, rather than zero, in case 
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the current process is the only active process - it is thus given another tick of 
processor time.

The actual process switch is not executed until the kernel is about to return 
to executing the current process in user state, and notices that the current 
process is timed out. At this time the kernel executes the F$AProc system 
call to put the current process back in the active queue (as described above), 
and the F$NProc system call to start execution of the next process. This 
feature ensures that system calls - which are executed in system state - are 
indivisible. That is, the current process will not be switched out while it is 
executing a system call, unless the system call explicitly puts the process to 
sleep.

The F$NProc system call starts the processor running the next process. It 
removes the first process in the active queue from the linked list, and makes 
it the current process. It then resets the D_Slice field of the System Globals, 
using the value in D_TSlice (ticks per time slice). This initializes the count 
of the number of ticks in the time slice for the process. If the F$NProc 
system call finds that there is no process to run, the kernel will execute the 
68000 stop instruction, causing the processor to stop executing instructions 
until an interrupt occurs - the kernel then checks the active queue again 
(the interrupt handler may have woken a process by sending a signal, or 
changing the value of an event). If a flag is set in the first compatibility byte 
of the init module, the kernel will not execute the stop instruction, so it 
simply loops, checking the active queue until it is not empty (this is to satisfy 
some processor boards that cannot support the stop instruction).

Note that the number of ticks per time slice is typically two. This is because 
the system can only resolve time to an integral number of ticks. A process 
switch does not necessarily happen on a tick interrupt. It will also happen if 
the current process goes to sleep, perhaps to wait for an I/O operation to 
complete. If the number of ticks per time slice were one, a process could 
become the current process just before a tick interrupt, and so get very little 
time. With two ticks per time slice the process will get at least one full tick 
(unless it goes to sleep, or is pre-empted during its time slice).

9.2 THE SCHEDULER FEATURES
The OS-9 scheduler implements four types of scheduling. These are 
described briefly below, and then in greater detail, in the following sections. 
Any combination of the scheduling mechanisms can be in use together.
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a) "Round robin" automatic scheduling. The processor time is 
divided into "time slices", and each process in the active 
queue is given a time slice in turn. A priority value assigned 
to each process causes high priority processes to receive time 
slices more frequently than low priority processes.

b) "Minimum process priority" process suspension. Processes 
with a priority value less than a designated threshold receive 
no time slices, even if they are in the active queue. The 
process will receive time slices if the threshold is lowered, or 
the process's priority is raised (F$SPrior), so that the 
process's priority is no longer below the threshold.

c) Pre-emptive prioritized scheduling. This is the scheduling 
familiar to real time kernel users. The highest priority active 
process remains the current process until it ceases to be 
active, or another process with a higher priority becomes 
active, or its process priority is reduced so that it is no longer 
the highest priority process, or the priority of another active 
process is increased above the priority of the current process. 
Only processes whose priorities are greater than or equal to a 
threshold are treated in this way. Processes with a priority 
below the threshold continue to be scheduled in the "round 
robin" manner, but receive no time slices while any process is 
active with a priority greater than or equal to the threshold.

d) Single process pre-emption. This is a mechanism that hands 
over scheduling to the application programmer. A process is 
specified as the pre-empting or "seizing" process. Only this 
process will be given processor time, until the specified 
process ID is changed, or the mechanism is suspended by 
specifying a process ID of zero. The scheduler will not give 
processor time to any other process, even if the pre-empting 
process goes to sleep, or dies.

9.3 ACTIVATING A PROCESS
As described above, a process is put in the active queue by the F$AProc 
system call. This is a privileged system call (it can only be made from system 
state), and it is normally only used by other system calls within the kernel, 
such as the F$Send system call (send a signal). Note that the process being 
put in the active queue may already be active (for example, the current 
process at the end of its time slice), and may even already be in the active 
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queue (for example, when a process's priority is changed by the F$SPrior 
system call).

The kernel maintains a "current system active queue age" value in the 
D_ActAge field of the System Globals. This is a long word value, initially set 
to $7FFF0000, and decremented at the start of each call to the F$AProc 
routine. If it decrements below zero, it is reset to $7FFF0000 (and the 
process descriptors in the active queue are updated, as described below). The 
term "system age" is perhaps a little misleading, as this value decreases as the 
system gets older!

The F$AProc routine, called to insert a process in the active queue, 
decrements the system age, and then calculates a "scheduling constant" (as 
described below) for the process. It is this scheduling constant that is used to 
determine the position of the process in the active queue. A process will be 
placed in the active queue ahead of a process with a lower scheduling 
constant. Note that a process that is being inserted into the active queue will 
be inserted after any processes with an equal scheduling constant. Once a 
process has been placed in the active queue its scheduling constant (written 
to the P$Sched field of its process descriptor) is not changed, unless the 
threshold of one of the scheduling pre-emptive mechanisms is changed, or 
the priority of the process is changed, or the system age is decremented 
below zero. In all cases the active queue is kept ordered by scheduling 
constant.

Normally, the scheduling constant of a process being put in the active queue 
is calculated by adding the (decremented) system age to the process's 
priority. Because the system age never exceeds $7FFF0000, and the process 
priority is a 16-bit word (and so cannot exceed $FFFF), the scheduling 
constant cannot exceed $7FFFFFFF. The process descriptor of the process is 
unlinked from any queue it may be in (the sleeping queue, the waiting queue, 
an event queue, or even the active queue), the new scheduling constant is 
written to the P$Sched field, and the kernel searches the active queue to 
find the place to insert the process.

The kernel also checks whether the new process has a higher process priority 
than the current process. If so, it marks the current process as "timed out" 
(sets bit 5 of the P$State field of its process descriptor). This causes the 
process now at the head of the active queue to become the current process 
when the currently executing system call or interrupt handler finishes. The 
aim is to allow a high priority process that has just woken up to immediately 
become the current process without waiting for the current process to finish 
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its time slice, unless a higher priority process is already active. This feature 
can be very important in real time applications.

If any of the three pre-emptive mechanisms is in use, the behaviour of 
FSAProc described above is modified. The following sections describe the 
effect of the automatic scheduling mentioned above, and the behaviour of the 
scheduler if the pre-emptive mechanisms are used.

9.4 AUTOMATIC SCHEDULING
The aim of the automatic scheduler is to share the processor's time among 
multiple processes according to the following principles:

a) Time slices are shared evenly, not given in a block to one 
process, followed by a block to another process.

b) A process priority mechanism is available, whereby a process 
of a given priority will receive more time slices than one of a 
lower priority.

c) All process of the same priority receive the same share of 
time slices, on a "round-robin" basis.

d) The mechanism must execute quickly, so that scheduling does 
not consume a significant fraction of the processor's time.

The OS-9 scheduler satisfies the principles described above. In order to 
execute quickly it uses a simple algorithm (described above) that cannot 
easily be expressed mathematically. As required, a high priority process 
receives more time slices than a lower priority process. The relationship 
depends on the absolute difference between the priorities. Thus two processes 
with priorities of 100 and 105 share time slices in the same ratio as if they 
had priorities of 50 and 55, or 5 and 10.

The sharing of time slices can be calculated as follows. If the lowest priority 
active process has priority A, and other active processes have priorities which 
are B, C, D, and E respectively greater than A, then the proportion of time 
slices going to processes other than process A - for example, process D - is:

(D+l)/(2+B+l+C+l+D+l+E+l)

while the proportion of time slices going to process A is:

2/(2+B+l+C+l+D+l+E+l)
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This has the interesting corollary that if the lowest priority process (or 
processes) has a priority only one less than that of the process with the next 
highest priority, it will get the same proportion of time as that process.

Another important effect of this algorithm is that quite a small difference in 
priority between processes will produce a large difference in processor time 
allocation. For example, if two processes are active, and one has a priority 
that is five higher than the other, the first process will get 5.5 times has 
much processor time as the second process. However, this is not usually of 
great importance, as a typical multi-tasking real time application will have a 
group of low priority processes, all with the same low priority, and a group of 
high priority processes, all with the same much higher priority.

9.5 AN EXAMPLE OF SCHEDULING
Below is shown an example of time slicing between three processes. It gives 
an empirical demonstration of how the processor time would be divided 
between three compute-bound processes11 at different priorities.

11 Processes that are continuously working, and do not ask to go to sleep.

The system age starts at 60. There are three processes, two of priority 10, 
and one of priority 8. All three are continuously active during the 10 time 
slices observed. The top row of the table shows the system age at each 
successive time slice. It is decremented by one each time as the current 
process is put back in the active queue. The three rows below show the 
scheduling constant for each of the processes at each time slice. The current 
process is marked with a The priority of the process is shown at the left of 
the row, and the total number of time slices for which the process was the 
current process is shown at the right of the row. Note that at each time slice 
only the scheduling constant of the process that was the current process in 
the previous process is recalculated - because the current process is put back 
in the active queue before the first process in the active queue becomes the 
new current process.

System Age

Priority 59 58 57 56 55 54 53 52 51 50 Slices
10 69 ► 69 67 67 ► 67 64 64 ► 64 61 ► 61 4
10 ► 70 68 68 ► 68 65 ► 65 63 63 ► 63 60 4
8 68 68 ► 68 64 64 64 ► 64 60 60 60 2
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Remember that the scheduling constant is calculated by adding the system 
age to the process's priority, and that if the scheduling constant of a process 
being put in the active queue is equal to that of a process already in the 
queue, the new process is put in the queue behind the process already in the 
queue. For the sake simplicity, the above example assumes that all three 
processes were initially put in the queue at the same system age (60). In fact, 
because the system age is decremented before a process is put in the queue, 
this would not happen in practice.

The example shows two important results. Firstly, the two processes of the 
same priority received the same number of time slices, while the lower 
priority process received less time slices. And secondly, the time slices were 
very evenly distributed between the processes. This illustrates that despite 
using a very simple algorithm, the OS-9 kernel achieves the aims of an 
automatic round robin scheduler.

9.6 SCHEDULING PRE-EMPTION MECHANISMS
OS-9 provides three mechanisms for the programmer to pre-empt the round 
robin scheduler. The mechanisms are all controlled by changing 
user-writable values in the System Globals. This is done using the F$SetSys 
system call (made by the C library function setsysO). This system call must 
be used to modify these controlling variables, even if the system is not using 
the SSM, (in which case the program could write to the variables directly). 
This is because the kernel takes action when these variables are changed, to 
ensure a correct change in the behaviour of the scheduler.

9.6.1 Minimum Priority

This facility allows a group of low priority processes to be suspended (given 
no processor time), and re-activated at a later time. This mechanism uses 
the System Globals field D_MinPty. If a process with a priority less than the 
value in this field is put in the active queue (by the F$AProc system call), its 
scheduling constant is set to zero, rather than calculating the scheduling 
constant from the system age and the process's priority. (Note that the 
normal calculation is used if the process is in system state - to allow it to 
complete a system call). Because the process's scheduling constant is zero, it 
is put at the tail of the active queue, along with the other processes whose 
priorities are below the "minimum priority”.

The F$NProc system call checks the priority of the process it is about to 
make the current process. If the priority is less than the value in the
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DMinPty field, it marks the process's process descriptor as "timed out" (bit 
5 set in the P$State field. In addition, if the process is not in system state, 
the kernel calls the F$AProc routine to re-insert the process in the active 
queue (which will set its scheduling constant to zero, and put it at the tail of 
the queue), and takes the next process from the head of the queue to be the 
current process. The process is marked as "timed out" so that if it is in system 
state (processing a system call), a task switch will occur as soon as the system 
call finishes. This allows the process to finish a system call (which must be 
permitted, otherwise system resources could be locked up), but not to execute 
any more of its program.

In this way, any process that was already in the active queue before the 
D_MinPty field was set above its priority is allowed to finish any system call 
it is executing, and then is re-inserted in the active queue, with a scheduling 
constant of zero. If the F$NProc routine finds that the process at the head 
of the active queue has a scheduling constant of zero, it acts as if the active 
queue were empty, by suspending the processor's execution of instructions. It 
does not need to check the rest of the queue, as the queue is always kept 
sorted by scheduling constant, so any other processes in the queue must also 
have a scheduling constant of zero.

From OS-9 version 2.3 onwards, if the kernel finds on task switch that the 
current process is the only active process, but its priority is less than the 
value in D_MinPty, it re-inserts the process in the active queue, and calls 
the F$NProc routine to activate the next process. As there is no other 
process in the active queue, this causes the current process to be suspended 
(its priority is less than D_MinPty), and processor execution to be 
suspended. This guarantees that processes with a priority below D MinPty 
are immediately suspended (after completing any system call). This may be 
needed to prevent these processes making a system call that takes some time 
to execute, possibly impairing the real time response of the high priority 
processes. Prior to OS-9 version 2.3, if the current process was the only 
active process it continued execution, even if its priority became less than 
DMinPty.

The result of this algorithm, in conjunction with the fact that the current 
process is marked as "timed out" if a higher priority process is put in the 
active queue, is that a high priority process can set the D MinPty field to 
immediately suspend a group of low priority processes, and then allow them 
to run at a later time by clearing the D_MinPty field.

To ensure that the low priority processes are re-activated when the 
D MinPty threshold is lowered, the F$SetSys system call (used to change 

191



MULTI-TASKING

fields in the System Globals) takes special action if this field is being 
changed, and the new value is less than the present value. It scans through 
the active queue, and re-inserts any process whose current scheduling 
constant is zero (using the F$AProc routine), causing its scheduling 
constant to be recalculated. It is therefore essential that the D MinPty field 
is changed using the F$SetSys system call or the _setsys() C library 
function, rather than by directly writing to the System Globals, as otherwise 
the low priority processes will never be re-activated. Note that a process is 
simply re-inserted in the active queue when the "minimum priority" is 
lowered - it is not necessarily re-activated, because its priority may still be 
below the "minimum priority". This permits any number of groups of 
processes at different priority levels to be suspended and re-activated in a 
hierarchy.

9.6.2 Maximum Age

The term "maximum age" used to refer to this mechanism is something of a 
misnomer, as the mechanism acts on the process's priority, not its "age". (See 
the chapter on the OS-9 Internal Structure for a discussion of a process's 
"age", which is a value invented only when a copy of the process descriptor is 
requested.)

The "maximum age" field in the System Globals - D MaxAge - sets a 
threshold. A process with a priority less than this threshold is scheduled in 
the normal "round robin" way, while processes with priorities greater than or 
equal to the threshold are scheduled in a strictly prioritized manner. If the 
D_MaxAge field is zero (the default on startup), this mechanism is disabled.

If D MaxAge is not zero, and a process has a priority greater than or equal 
to the threshold, then the F$AProc routine calculates its scheduling 
constant in a different way. Instead of adding the process priority to the 
current system age, it adds the process priority to $80000000. As described 
above, the normal method of calculating the scheduling constant cannot 
produce a result greater than $7FFFFFFF. Therefore all processes in the 
group with priorities equal to or above the threshold will always have 
scheduling constants greater than all processes in the lower group, and so 
any process in the upper group will be inserted in the active queue ahead of 
all processes in the lower group.

The first effect of this mechanism is that processes in the lower group will 
not run so long as any process in the higher group is active. The second effect 
is that the processes in the upper group that are active are always ordered 
strictly by priority in the active queue, irrespective of how much processor 
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time they have already used. This means that the highest priority active 
process will always be the current process. It must cease to be active (or have 
its priority changed) in order for the process with the next highest priority to 
become the current process. Therefore processes in the upper group are 
subject to a pre-emptive prioritized scheduling mechanism - there is no 
"round robin" distribution of processor time. This is the scheduler familiar to 
users of real time kernels.

Changing an active process's priority (using the F$SPrior system call,or 
setprO C library function) causes it to be re-inserted in the active queue, 
and if a process with a higher priority than the current process is inserted in 
the active queue, then the current process is marked as "timed out". 
Therefore, as with the "minimum priority" mechanism, processes in the 
upper group immediately pre-empt processes in the lower group. That is, if 
the current process is a process in the lower group, and a process in the 
upper group becomes active, the time slice of the current process is 
immediately terminated.

The F$SetSys system call checks whether the D_MaxAge field is being 
changed. If so, it calls the F$AProc routine to re-insert every active process 
back into the active queue. This ensures that a change in threshold is 
immediately acted upon, with a re-ordering of the upper and lower groups. 
Also, if the current process is now in the lower group, and any process in the 
upper group is active, the current process is marked as "timed out", as 
described above. It is therefore essential that D_MaxAge is changed by using 
the F$SetSys system call or the _setsys() C library function, rather than by 
writing directly to the System Globals.

9.6.3 Seizing Control

This mechanism completely pre-empts the scheduler, leaving all scheduling 
to be done by the application. It uses the System Globals field D Sieze (note 
the spelling). The mechanism is enabled if this field is not zero, and is 
disabled again if the field is set to zero. When the mechanism is enabled, the 
D_Sieze field is assumed to contain the ID of a process. When the process 
with this ID is put in the active queue by the F$AProc system call it is given 
a scheduling constant of $FFFFFFFF, forcing it to the front of the queue. As 
described above, if it also has a higher priority than the current process, the 
current process is marked as "timed out".

When the current process is switched out, and the' kernel looks for the next 
process to run, the F$NProc system call will make the "seizing" process the 
current process (because it is at the head of the queue). At the end of its time 
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slice the process will again become the current process, because the 
F$AProc routine will again force it to the front of the active queue. In 
addition, if the process goes to sleep (or even if it dies!), the F$NProc 
routine will refuse to run any other process, and will suspend execution just 
as if the active queue were empty. This mechanism therefore leaves the 
scheduling entirely in the hands of the programmer, and clearly it must be 
used with extreme care. Indeed, because of the dangers involved, this 
mechanism should only be used if there is absolutely no alternative, which is 
extremely rare.

The F$SetSys system call takes no special action when the D_Sieze variable 
is changed.

9.6.4 The Precedence of the Mechanisms

Although any or all of the mechanisms described above can be activated at 
any one time, in some respects they are clearly in conflict. It is therefore 
useful to know in what order of precedence the kernel acts on them.

The "seizing" mechanism has the highest precedence. If D_Sieze is not zero, 
the other mechanisms are inoperative. Otherwise, the priority of a process is 
first checked against the D_MinPty field, and only if it is not below this 
threshold, or the process is in system state, is the priority also checked 
against the D_MaxAge field. Therefore, if a process's priority is below 
D MinPty the process will be suspended, even if its priority is equal to or 
greater than DJMaxAge, unless it is in system state (presumably executing a 
system call).

9.7 SCHEDULING IN REAL TIME APPLICATIONS
The processes in a typical real time application will be divided into two 
groups:

a) High priority processes that are reacting to I/O events. These 
processes sleep, waiting for an I/O event, wake up to deal 
with the I/O event, and then go to sleep again. These 
processes are real time - they must respond to the I/O event 
within the specified time, or the system has failed.

b) Low priority processes that are handling non-real-time 
functions. User interface and reporting processes usually fall 
into this categoiy.
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Although the pre-emption mechanisms described above are available, they 
are very rarely needed. In almost every case it is sufficient to give the first 
group of processes all the same priority, which is significantly higher than 
that of the second group, which also all have the same priority.

If one of the high priority processes is woken it will get processor time ahead 
of all the low priority processes, although it may execute after one or more 
other high priority processes. In addition, if a low priority process is the 
current process when a high priority process wakes up, the time slice of the 
low priority process is immediately terminated, so the high priority process 
immediately becomes the current process.

To make one process execute to the exclusion of all others for a short time it 
is only necessary to give it a significantly higher priority. For example, if the 
high priority group of processes has a priority of 1000, while the low priority 
group has a priority of 100, then a high priority process will (to a very rough 
approximation), get 900 time slices before any low priority process receives 
any processor time. As this typically equates to 18 seconds of processor time, 
the high priority process will have plenty of time to finish its job and go back 
to sleep, without worrying that it may lose processor time to a low priority 
process.

This mechanism is made even more flexible by the ability of a process to 
change its own priority, using the F$SPrior system call (made by the 
setprO C library function). In addition, a process can change the priority of 
another process, provided the process making the F$SPrior system call is 
owned by the same user (same group number and user ID), or it is owned by 
a super user (group zero).

If a greater degree of control is required in very time critical applications, the 
"maximum age" pre-emption mechanism can be used. This retains the 
benefits of the automatic scheduling for the lower priority group of processes, 
while giving a deterministic prioritized scheduling for the upper group of 
processes.

Note that a task switch is not performed if the current process is executing in 
system state. This causes system calls to be indivisible, but it also means that 
task switching is suspended while a system state process is the current 
process. Because a system call is allowed to proceed to completion (or until it 
explicitly goes to sleep), a lengthy system call that does not sleep - such as a 
large disk transfer without DMA - can cause a significant delay before even a 
high priority process gets processor time. This should be taken into account 
when writing operating system components such as device drivers. The 
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device driver, knowing that it is taking a long time to complete its operation, 
could sleep for one tick (which causes the process to be immediately 
re-inserted in the active queue) at regular intervals, allowing other processes 
an opportunity to gain processor time.

The same caution should be applied to interrupt service routines. The 
execution of processes is naturally suspended while an interrupt is being 
serviced, because the interrupt causes the processor to change the flow of 
control. Therefore interrupt routines should be as short as possible, to avoid 
compromising the real time response of high priority processes.
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