
MULTI-TASKING

CHAPTER 9

MULTI-TASKING

a . « Multi-tasking is very important in real time applications, and
is essential for multi-user systems. Although traditionally

BfauV these uses have required very different operating systems, the
multi-tasking features of OS-9 are suited to both without

compromise or limitation. Microware have designed a simple and very
elegant scheduling algorithm that is quick to execute, gives great flexibility,
but is very easy to use. The default method of operation gives a prioritized
automatic "round robin" scheduler, but a number of options are available to
alter the behaviour of the scheduler. In the most extreme case, the scheduler
can be made to operate in a purely hierarchical prioritized mode, such as is
commonly found in simple real time kernels.

9.1 OS-9 PROCESS SCHEDULING
All of the process scheduling features of OS-9 are in the kernel module. The
aim of the scheduler is to permit multiple processes (tasks) to be requesting
processor time, and to divide up the processor time between them. To do this,
OS-9 maintains a linked list of the processes that are requesting processor
time, known as the "active queue". Each such process will eventually get some
processor time, unless one of the pre-emptive features of the scheduler is in
use. An important aspect of the OS-9 scheduler is the concept of the "current
process". The current process is the process that is actually running now
(except for the execution of interrupt service routines). The current process
is not in the active queue. It is known because the System Globals field
D_Proc points to its process descriptor. Therefore the active queue is the list
of processes that want processor time, but are not currently receiving it.

183

MULTI-TASKING

Processes not in the active queue are not run by the scheduler. A process
must be moved to the active queue to be requesting processor time. A process
can only cease to be active by its own request, such as a "wait for event" or a
"sleep" (which may be executed from within a system call, such as an I/O
call), or if the process is terminated by the kernel in response to a "kill"
signal, or a hardware-exemption, or a signal received by a process that has not
installed a signal handleriroutine. A process is put in the active queue when
it is first forked (unless it is forked for debugging), when it receives a signal,
or when the condition it is waiting for (such as an event) occurs. This is the
function of the F$AProc system call.

Scheduling can use the automatic (time-slicing) scheduler, or the
pre-emption mechanisms described below, or a mixture. The main work of
the scheduler is carried out when a process is put in the active queue. The
scheduler must decide at what position within the linked list to insert the
new process. As described below, this is done in such a way that the next
process to execute is always at the head of the queue. Therefore when the
time comes to switch processes (a task switch), the decision of which process
to make the current process is a very simple one. The kernel removes the
first process in the queue from the linked list, and makes it the current
process. This is the function of the F$NProc system call.

A process switch (call to F$NProc) is only carried out when the current
process makes a system call that suspends it (such as a sleep request, perhaps
from within a device driver), or the current process dies, or the processor
descriptor of the current process is marked as "timed out" when the
operating system is about to return to user state (to continue execution of the
current process) after a system call or an interrupt. In this last case, the
current process is inserted into the active queue exactly as if it had just
become active, before the first process in the queue is removed from the
queue to become the current process. It is therefore possible for the same
process to become the current process again, for example if the process has a
high priority. Note that if the active queue is empty (the current process is
the only active process), the kernel does not waste time re-inserting the
process in the active queue - it ignores the "time out".

The tick routine of the kernel is called on each clock tick interrupt. It
decrements the D_Slice field of the System Globals, which contains the
number of ticks remaining in the time slice of the current process. If this
field is now zero, the time slice of the current process has finished. The
kernel sets the "timed out" flag (bit 5 of P$State) in the process descriptor of
the current process. It also resets D_Slice to one, rather than zero, in case

184

MULTI-TASKING

the current process is the only active process - it is thus given another tick of
processor time.

The actual process switch is not executed until the kernel is about to return
to executing the current process in user state, and notices that the current
process is timed out. At this time the kernel executes the F$AProc system
call to put the current process back in the active queue (as described above),
and the F$NProc system call to start execution of the next process. This
feature ensures that system calls - which are executed in system state - are
indivisible. That is, the current process will not be switched out while it is
executing a system call, unless the system call explicitly puts the process to
sleep.

The F$NProc system call starts the processor running the next process. It
removes the first process in the active queue from the linked list, and makes
it the current process. It then resets the D_Slice field of the System Globals,
using the value in D_TSlice (ticks per time slice). This initializes the count
of the number of ticks in the time slice for the process. If the F$NProc
system call finds that there is no process to run, the kernel will execute the
68000 stop instruction, causing the processor to stop executing instructions
until an interrupt occurs - the kernel then checks the active queue again
(the interrupt handler may have woken a process by sending a signal, or
changing the value of an event). If a flag is set in the first compatibility byte
of the init module, the kernel will not execute the stop instruction, so it
simply loops, checking the active queue until it is not empty (this is to satisfy
some processor boards that cannot support the stop instruction).

Note that the number of ticks per time slice is typically two. This is because
the system can only resolve time to an integral number of ticks. A process
switch does not necessarily happen on a tick interrupt. It will also happen if
the current process goes to sleep, perhaps to wait for an I/O operation to
complete. If the number of ticks per time slice were one, a process could
become the current process just before a tick interrupt, and so get very little
time. With two ticks per time slice the process will get at least one full tick
(unless it goes to sleep, or is pre-empted during its time slice).

9.2 THE SCHEDULER FEATURES
The OS-9 scheduler implements four types of scheduling. These are
described briefly below, and then in greater detail, in the following sections.
Any combination of the scheduling mechanisms can be in use together.

185

MULTI-TASKING

a) "Round robin" automatic scheduling. The processor time is
divided into "time slices", and each process in the active
queue is given a time slice in turn. A priority value assigned
to each process causes high priority processes to receive time
slices more frequently than low priority processes.

b) "Minimum process priority" process suspension. Processes
with a priority value less than a designated threshold receive
no time slices, even if they are in the active queue. The
process will receive time slices if the threshold is lowered, or
the process's priority is raised (F$SPrior), so that the
process's priority is no longer below the threshold.

c) Pre-emptive prioritized scheduling. This is the scheduling
familiar to real time kernel users. The highest priority active
process remains the current process until it ceases to be
active, or another process with a higher priority becomes
active, or its process priority is reduced so that it is no longer
the highest priority process, or the priority of another active
process is increased above the priority of the current process.
Only processes whose priorities are greater than or equal to a
threshold are treated in this way. Processes with a priority
below the threshold continue to be scheduled in the "round
robin" manner, but receive no time slices while any process is
active with a priority greater than or equal to the threshold.

d) Single process pre-emption. This is a mechanism that hands
over scheduling to the application programmer. A process is
specified as the pre-empting or "seizing" process. Only this
process will be given processor time, until the specified
process ID is changed, or the mechanism is suspended by
specifying a process ID of zero. The scheduler will not give
processor time to any other process, even if the pre-empting
process goes to sleep, or dies.

9.3 ACTIVATING A PROCESS
As described above, a process is put in the active queue by the F$AProc
system call. This is a privileged system call (it can only be made from system
state), and it is normally only used by other system calls within the kernel,
such as the F$Send system call (send a signal). Note that the process being
put in the active queue may already be active (for example, the current
process at the end of its time slice), and may even already be in the active

186

MULTI-TASKING

queue (for example, when a process's priority is changed by the F$SPrior
system call).

The kernel maintains a "current system active queue age" value in the
D_ActAge field of the System Globals. This is a long word value, initially set
to $7FFF0000, and decremented at the start of each call to the F$AProc
routine. If it decrements below zero, it is reset to $7FFF0000 (and the
process descriptors in the active queue are updated, as described below). The
term "system age" is perhaps a little misleading, as this value decreases as the
system gets older!

The F$AProc routine, called to insert a process in the active queue,
decrements the system age, and then calculates a "scheduling constant" (as
described below) for the process. It is this scheduling constant that is used to
determine the position of the process in the active queue. A process will be
placed in the active queue ahead of a process with a lower scheduling
constant. Note that a process that is being inserted into the active queue will
be inserted after any processes with an equal scheduling constant. Once a
process has been placed in the active queue its scheduling constant (written
to the P$Sched field of its process descriptor) is not changed, unless the
threshold of one of the scheduling pre-emptive mechanisms is changed, or
the priority of the process is changed, or the system age is decremented
below zero. In all cases the active queue is kept ordered by scheduling
constant.

Normally, the scheduling constant of a process being put in the active queue
is calculated by adding the (decremented) system age to the process's
priority. Because the system age never exceeds $7FFF0000, and the process
priority is a 16-bit word (and so cannot exceed $FFFF), the scheduling
constant cannot exceed $7FFFFFFF. The process descriptor of the process is
unlinked from any queue it may be in (the sleeping queue, the waiting queue,
an event queue, or even the active queue), the new scheduling constant is
written to the P$Sched field, and the kernel searches the active queue to
find the place to insert the process.

The kernel also checks whether the new process has a higher process priority
than the current process. If so, it marks the current process as "timed out"
(sets bit 5 of the P$State field of its process descriptor). This causes the
process now at the head of the active queue to become the current process
when the currently executing system call or interrupt handler finishes. The
aim is to allow a high priority process that has just woken up to immediately
become the current process without waiting for the current process to finish

187

MULTI-TASKING

its time slice, unless a higher priority process is already active. This feature
can be very important in real time applications.

If any of the three pre-emptive mechanisms is in use, the behaviour of
FSAProc described above is modified. The following sections describe the
effect of the automatic scheduling mentioned above, and the behaviour of the
scheduler if the pre-emptive mechanisms are used.

9.4 AUTOMATIC SCHEDULING
The aim of the automatic scheduler is to share the processor's time among
multiple processes according to the following principles:

a) Time slices are shared evenly, not given in a block to one
process, followed by a block to another process.

b) A process priority mechanism is available, whereby a process
of a given priority will receive more time slices than one of a
lower priority.

c) All process of the same priority receive the same share of
time slices, on a "round-robin" basis.

d) The mechanism must execute quickly, so that scheduling does
not consume a significant fraction of the processor's time.

The OS-9 scheduler satisfies the principles described above. In order to
execute quickly it uses a simple algorithm (described above) that cannot
easily be expressed mathematically. As required, a high priority process
receives more time slices than a lower priority process. The relationship
depends on the absolute difference between the priorities. Thus two processes
with priorities of 100 and 105 share time slices in the same ratio as if they
had priorities of 50 and 55, or 5 and 10.

The sharing of time slices can be calculated as follows. If the lowest priority
active process has priority A, and other active processes have priorities which
are B, C, D, and E respectively greater than A, then the proportion of time
slices going to processes other than process A - for example, process D - is:

(D+l)/(2+B+l+C+l+D+l+E+l)

while the proportion of time slices going to process A is:

2/(2+B+l+C+l+D+l+E+l)

188

MULTI-TASKING

This has the interesting corollary that if the lowest priority process (or
processes) has a priority only one less than that of the process with the next
highest priority, it will get the same proportion of time as that process.

Another important effect of this algorithm is that quite a small difference in
priority between processes will produce a large difference in processor time
allocation. For example, if two processes are active, and one has a priority
that is five higher than the other, the first process will get 5.5 times has
much processor time as the second process. However, this is not usually of
great importance, as a typical multi-tasking real time application will have a
group of low priority processes, all with the same low priority, and a group of
high priority processes, all with the same much higher priority.

9.5 AN EXAMPLE OF SCHEDULING
Below is shown an example of time slicing between three processes. It gives
an empirical demonstration of how the processor time would be divided
between three compute-bound processes11 at different priorities.

11 Processes that are continuously working, and do not ask to go to sleep.

The system age starts at 60. There are three processes, two of priority 10,
and one of priority 8. All three are continuously active during the 10 time
slices observed. The top row of the table shows the system age at each
successive time slice. It is decremented by one each time as the current
process is put back in the active queue. The three rows below show the
scheduling constant for each of the processes at each time slice. The current
process is marked with a The priority of the process is shown at the left of
the row, and the total number of time slices for which the process was the
current process is shown at the right of the row. Note that at each time slice
only the scheduling constant of the process that was the current process in
the previous process is recalculated - because the current process is put back
in the active queue before the first process in the active queue becomes the
new current process.

System Age

Priority 59 58 57 56 55 54 53 52 51 50 Slices
10 69 ► 69 67 67 ► 67 64 64 ► 64 61 ► 61 4
10 ► 70 68 68 ► 68 65 ► 65 63 63 ► 63 60 4
8 68 68 ► 68 64 64 64 ► 64 60 60 60 2

189

MULTI-TASKING

Remember that the scheduling constant is calculated by adding the system
age to the process's priority, and that if the scheduling constant of a process
being put in the active queue is equal to that of a process already in the
queue, the new process is put in the queue behind the process already in the
queue. For the sake simplicity, the above example assumes that all three
processes were initially put in the queue at the same system age (60). In fact,
because the system age is decremented before a process is put in the queue,
this would not happen in practice.

The example shows two important results. Firstly, the two processes of the
same priority received the same number of time slices, while the lower
priority process received less time slices. And secondly, the time slices were
very evenly distributed between the processes. This illustrates that despite
using a very simple algorithm, the OS-9 kernel achieves the aims of an
automatic round robin scheduler.

9.6 SCHEDULING PRE-EMPTION MECHANISMS
OS-9 provides three mechanisms for the programmer to pre-empt the round
robin scheduler. The mechanisms are all controlled by changing
user-writable values in the System Globals. This is done using the F$SetSys
system call (made by the C library function setsysO). This system call must
be used to modify these controlling variables, even if the system is not using
the SSM, (in which case the program could write to the variables directly).
This is because the kernel takes action when these variables are changed, to
ensure a correct change in the behaviour of the scheduler.

9.6.1 Minimum Priority

This facility allows a group of low priority processes to be suspended (given
no processor time), and re-activated at a later time. This mechanism uses
the System Globals field D_MinPty. If a process with a priority less than the
value in this field is put in the active queue (by the F$AProc system call), its
scheduling constant is set to zero, rather than calculating the scheduling
constant from the system age and the process's priority. (Note that the
normal calculation is used if the process is in system state - to allow it to
complete a system call). Because the process's scheduling constant is zero, it
is put at the tail of the active queue, along with the other processes whose
priorities are below the "minimum priority”.

The F$NProc system call checks the priority of the process it is about to
make the current process. If the priority is less than the value in the

190

MULTI-TASKING

DMinPty field, it marks the process's process descriptor as "timed out" (bit
5 set in the P$State field. In addition, if the process is not in system state,
the kernel calls the F$AProc routine to re-insert the process in the active
queue (which will set its scheduling constant to zero, and put it at the tail of
the queue), and takes the next process from the head of the queue to be the
current process. The process is marked as "timed out" so that if it is in system
state (processing a system call), a task switch will occur as soon as the system
call finishes. This allows the process to finish a system call (which must be
permitted, otherwise system resources could be locked up), but not to execute
any more of its program.

In this way, any process that was already in the active queue before the
D_MinPty field was set above its priority is allowed to finish any system call
it is executing, and then is re-inserted in the active queue, with a scheduling
constant of zero. If the F$NProc routine finds that the process at the head
of the active queue has a scheduling constant of zero, it acts as if the active
queue were empty, by suspending the processor's execution of instructions. It
does not need to check the rest of the queue, as the queue is always kept
sorted by scheduling constant, so any other processes in the queue must also
have a scheduling constant of zero.

From OS-9 version 2.3 onwards, if the kernel finds on task switch that the
current process is the only active process, but its priority is less than the
value in D_MinPty, it re-inserts the process in the active queue, and calls
the F$NProc routine to activate the next process. As there is no other
process in the active queue, this causes the current process to be suspended
(its priority is less than D_MinPty), and processor execution to be
suspended. This guarantees that processes with a priority below D MinPty
are immediately suspended (after completing any system call). This may be
needed to prevent these processes making a system call that takes some time
to execute, possibly impairing the real time response of the high priority
processes. Prior to OS-9 version 2.3, if the current process was the only
active process it continued execution, even if its priority became less than
DMinPty.

The result of this algorithm, in conjunction with the fact that the current
process is marked as "timed out" if a higher priority process is put in the
active queue, is that a high priority process can set the D MinPty field to
immediately suspend a group of low priority processes, and then allow them
to run at a later time by clearing the D_MinPty field.

To ensure that the low priority processes are re-activated when the
D MinPty threshold is lowered, the F$SetSys system call (used to change

191

MULTI-TASKING

fields in the System Globals) takes special action if this field is being
changed, and the new value is less than the present value. It scans through
the active queue, and re-inserts any process whose current scheduling
constant is zero (using the F$AProc routine), causing its scheduling
constant to be recalculated. It is therefore essential that the D MinPty field
is changed using the F$SetSys system call or the _setsys() C library
function, rather than by directly writing to the System Globals, as otherwise
the low priority processes will never be re-activated. Note that a process is
simply re-inserted in the active queue when the "minimum priority" is
lowered - it is not necessarily re-activated, because its priority may still be
below the "minimum priority". This permits any number of groups of
processes at different priority levels to be suspended and re-activated in a
hierarchy.

9.6.2 Maximum Age

The term "maximum age" used to refer to this mechanism is something of a
misnomer, as the mechanism acts on the process's priority, not its "age". (See
the chapter on the OS-9 Internal Structure for a discussion of a process's
"age", which is a value invented only when a copy of the process descriptor is
requested.)

The "maximum age" field in the System Globals - D MaxAge - sets a
threshold. A process with a priority less than this threshold is scheduled in
the normal "round robin" way, while processes with priorities greater than or
equal to the threshold are scheduled in a strictly prioritized manner. If the
D_MaxAge field is zero (the default on startup), this mechanism is disabled.

If D MaxAge is not zero, and a process has a priority greater than or equal
to the threshold, then the F$AProc routine calculates its scheduling
constant in a different way. Instead of adding the process priority to the
current system age, it adds the process priority to $80000000. As described
above, the normal method of calculating the scheduling constant cannot
produce a result greater than $7FFFFFFF. Therefore all processes in the
group with priorities equal to or above the threshold will always have
scheduling constants greater than all processes in the lower group, and so
any process in the upper group will be inserted in the active queue ahead of
all processes in the lower group.

The first effect of this mechanism is that processes in the lower group will
not run so long as any process in the higher group is active. The second effect
is that the processes in the upper group that are active are always ordered
strictly by priority in the active queue, irrespective of how much processor

192

MULTI-TASKING

time they have already used. This means that the highest priority active
process will always be the current process. It must cease to be active (or have
its priority changed) in order for the process with the next highest priority to
become the current process. Therefore processes in the upper group are
subject to a pre-emptive prioritized scheduling mechanism - there is no
"round robin" distribution of processor time. This is the scheduler familiar to
users of real time kernels.

Changing an active process's priority (using the F$SPrior system call,or
setprO C library function) causes it to be re-inserted in the active queue,
and if a process with a higher priority than the current process is inserted in
the active queue, then the current process is marked as "timed out".
Therefore, as with the "minimum priority" mechanism, processes in the
upper group immediately pre-empt processes in the lower group. That is, if
the current process is a process in the lower group, and a process in the
upper group becomes active, the time slice of the current process is
immediately terminated.

The F$SetSys system call checks whether the D_MaxAge field is being
changed. If so, it calls the F$AProc routine to re-insert every active process
back into the active queue. This ensures that a change in threshold is
immediately acted upon, with a re-ordering of the upper and lower groups.
Also, if the current process is now in the lower group, and any process in the
upper group is active, the current process is marked as "timed out", as
described above. It is therefore essential that D_MaxAge is changed by using
the F$SetSys system call or the _setsys() C library function, rather than by
writing directly to the System Globals.

9.6.3 Seizing Control

This mechanism completely pre-empts the scheduler, leaving all scheduling
to be done by the application. It uses the System Globals field D Sieze (note
the spelling). The mechanism is enabled if this field is not zero, and is
disabled again if the field is set to zero. When the mechanism is enabled, the
D_Sieze field is assumed to contain the ID of a process. When the process
with this ID is put in the active queue by the F$AProc system call it is given
a scheduling constant of $FFFFFFFF, forcing it to the front of the queue. As
described above, if it also has a higher priority than the current process, the
current process is marked as "timed out".

When the current process is switched out, and the' kernel looks for the next
process to run, the F$NProc system call will make the "seizing" process the
current process (because it is at the head of the queue). At the end of its time

193

MULTI-TASKING

slice the process will again become the current process, because the
F$AProc routine will again force it to the front of the active queue. In
addition, if the process goes to sleep (or even if it dies!), the F$NProc
routine will refuse to run any other process, and will suspend execution just
as if the active queue were empty. This mechanism therefore leaves the
scheduling entirely in the hands of the programmer, and clearly it must be
used with extreme care. Indeed, because of the dangers involved, this
mechanism should only be used if there is absolutely no alternative, which is
extremely rare.

The F$SetSys system call takes no special action when the D_Sieze variable
is changed.

9.6.4 The Precedence of the Mechanisms

Although any or all of the mechanisms described above can be activated at
any one time, in some respects they are clearly in conflict. It is therefore
useful to know in what order of precedence the kernel acts on them.

The "seizing" mechanism has the highest precedence. If D_Sieze is not zero,
the other mechanisms are inoperative. Otherwise, the priority of a process is
first checked against the D_MinPty field, and only if it is not below this
threshold, or the process is in system state, is the priority also checked
against the D_MaxAge field. Therefore, if a process's priority is below
D MinPty the process will be suspended, even if its priority is equal to or
greater than DJMaxAge, unless it is in system state (presumably executing a
system call).

9.7 SCHEDULING IN REAL TIME APPLICATIONS
The processes in a typical real time application will be divided into two
groups:

a) High priority processes that are reacting to I/O events. These
processes sleep, waiting for an I/O event, wake up to deal
with the I/O event, and then go to sleep again. These
processes are real time - they must respond to the I/O event
within the specified time, or the system has failed.

b) Low priority processes that are handling non-real-time
functions. User interface and reporting processes usually fall
into this categoiy.

194

MULTI-TASKING

Although the pre-emption mechanisms described above are available, they
are very rarely needed. In almost every case it is sufficient to give the first
group of processes all the same priority, which is significantly higher than
that of the second group, which also all have the same priority.

If one of the high priority processes is woken it will get processor time ahead
of all the low priority processes, although it may execute after one or more
other high priority processes. In addition, if a low priority process is the
current process when a high priority process wakes up, the time slice of the
low priority process is immediately terminated, so the high priority process
immediately becomes the current process.

To make one process execute to the exclusion of all others for a short time it
is only necessary to give it a significantly higher priority. For example, if the
high priority group of processes has a priority of 1000, while the low priority
group has a priority of 100, then a high priority process will (to a very rough
approximation), get 900 time slices before any low priority process receives
any processor time. As this typically equates to 18 seconds of processor time,
the high priority process will have plenty of time to finish its job and go back
to sleep, without worrying that it may lose processor time to a low priority
process.

This mechanism is made even more flexible by the ability of a process to
change its own priority, using the F$SPrior system call (made by the
setprO C library function). In addition, a process can change the priority of
another process, provided the process making the F$SPrior system call is
owned by the same user (same group number and user ID), or it is owned by
a super user (group zero).

If a greater degree of control is required in very time critical applications, the
"maximum age" pre-emption mechanism can be used. This retains the
benefits of the automatic scheduling for the lower priority group of processes,
while giving a deterministic prioritized scheduling for the upper group of
processes.

Note that a task switch is not performed if the current process is executing in
system state. This causes system calls to be indivisible, but it also means that
task switching is suspended while a system state process is the current
process. Because a system call is allowed to proceed to completion (or until it
explicitly goes to sleep), a lengthy system call that does not sleep - such as a
large disk transfer without DMA - can cause a significant delay before even a
high priority process gets processor time. This should be taken into account
when writing operating system components such as device drivers. The

195

MULTI-TASKING

device driver, knowing that it is taking a long time to complete its operation,
could sleep for one tick (which causes the process to be immediately
re-inserted in the active queue) at regular intervals, allowing other processes
an opportunity to gain processor time.

The same caution should be applied to interrupt service routines. The
execution of processes is naturally suspended while an interrupt is being
serviced, because the interrupt causes the processor to change the flow of
control. Therefore interrupt routines should be as short as possible, to avoid
compromising the real time response of high priority processes.

196

	CHAPTER 9
MULTI-TASKING
	9.1 OS-9 PROCESS SCHEDULING
	9.2 THE SCHEDULER FEATURES
	9.3 ACTIVATING A PROCESS
	9.4 AUTOMATIC SCHEDULING
	9.5 AN EXAMPLE OF SCHEDULING
	9.6 SCHEDULING PRE-EMPTION MECHANISMS
	9.6.1 Minimum Priority
	9.6.2 Maximum Age
	9.6.3 Seizing Control
	9.6.4 The Precedence of the Mechanisms

	9.7 SCHEDULING IN REAL TIME APPLICATIONS

