
INTER-PROCESS COMMUNICATION

CHAPTER 8

INTER-PROCESS COMMUNICATION

8.1 WHY USE MULTI-TASKING?
Every real time application will have at least two devices to 

j/Mk deal with, as the minimum function will be to take in data in 
some form, process the data, and output the results. Most 
applications will have more than two devices, perhaps many 

more. In addition, the application may have some non-real-time devices to 
deal with, such as an operator keyboard and graphics display.

The direct approach to such an application is to poll each device in turn. If 
the device needs servicing an appropriate function is called, and then polling 
continues. However, this approach causes serious problems in most real time 
applications. The handler function for one device may take some time to 
execute (for example, the update of a graphical display), so that the real time 
response of another device is not met.

Again, the direct approach would be polling. A handler function that takes 
some time to execute can frequently poll the devices that need rapid 
response, call the appropriate handler if a device needs servicing, and then 
continue its own function. This produces an increasingly complex program 
that wastes a great deal of processor time in polling. The tortuous complexity 
of the program makes maintenance, improvement, and customization of the 
application very difficult. The processor time wasted in polling forces the use 
of a much faster processor, or may make the application impossible.

The solution is to use interrupts from external devices rather than polling, 
and to have a separate program handling each device. The program can 
sleep, waiting for its device to generate an interrupt, then handle the 
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interrupt and go back to sleep. Because the operating system will 
automatically share the processor time between the currently active 
processes (and give no processor time to the sleeping processes), a program 
does not have to worry that the time it is taking to service its device might 
cause an unacceptable delay in servicing another device.

One program - the parent - is called by the operator, or started 
automatically by the system on startup. It has the job of forking the other 
programs - the children - that make up the application. Of course, any of 
the programs may themselves fork other programs. Such secondary programs 
may execute for as long as the application continues, as the original parent 
and children normally will, or may be called for a transitory purpose.

But by splitting the application into separate programs, executing as separate 
processes, another problem has been introduced. A process must be able to 
exchange data with other processes, and must be able to activate a sleeping 
process when it has data ready for that process. This is the purpose of 
inter-process comunication.

8.2 WHAT IS INTER PROCESS COMMUNICATION?
Almost all real time applications require the use of multiple concurrently 
executing processes. Multiple processes executing together to produce a 
combined result need mechanisms to:

• Pass data between processes.

• Synchronize one or more processes with each other.

Frequently the two needs are combined - a process requires data from 
another process, and must be made to wait until the data is available. In 
addition to processes communicating with each other, interrupt handler 
functions must be able to communicate with processes. In particular, an 
interrupt handler must be able to activate (wake up) a sleeping process.

It is also sometimes desirable for a process or interrupt handler to cause a 
temporary change of flow of control in a program, so that it can handle 
exceptional circumstances without waiting or polling.

Some inter-process communication is private - that is, between processes 
who know of each other's existence and wish to communicate directly 
between themselves. Other communications are public - the sending process 
is essentially broadcasting, and some or all other processes can receive the 
communication.
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Because an interrupt can occur while a system call is being executed, the 
operating system must mask all interrupts during system calls that can be 
called from an interrupt handler (to prevent concurrent use of the same 
operating system memory structures). To avoid masking interrupts 
unnecessarily (because it would adversely affect real time response), OS-9 
specifies that only certain system calls are allowed in an interrupt handler. 
Therefore not all of the inter-process communication mechanisms can be 
used by an interrupt handler communicating with a process.

8.3 OS-9 INTER PROCESS COMMUNICATION FACILITIES
Multiple inter-process communication mechanisms are required to 
efficiently service the various circumstances that require data transfer or 
inter-process synchronization. OS-9 provides several inter-process 
communication mechanisms. Deciding which to use to solve a particular 
problem is part of the application design task. The table in figure 6 
highlights the important differences between the mechanisms. The columns 
of the table are headed as follows:

DAT Data can be passed.
SYN The mechanism provides synchronization (it can wake up 

a sleeping process).
PUB The mechanism is public, as opposed to private.
INT An interrupt handler function can use this mechanism.

1Generated by clock tick interrupt.

Mechanism DAT SYN PUB INT
Wait for child Exit status Yes No No
Signal Signal code Yes No Yes
Event Event value Yes Yes Yes
Alarm No Yes No Yes1

Unnamed pipe Yes Yes No No
Named pipe Yes Yes Yes No
Disk file Yes Yes Yes No
Data module Yes No Yes Yes
Shared memory Yes No Yes Yes
External memory Yes No Yes Yes

• Figure 6. Inter-process communication mechanisms
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8.4 FORKING A PROCESS
The forking of a child process may not seem like a form of inter-process 
communication, but in fact it is the most fundamental form of inter-process 
synchronization and communication. Unless additional processes are forked 
no inter-process communication can take place (almost by definition!). 
Forking provides synchronization (the forked process starts when the fork 
request is made) and communication (the parameter string passed to the 
child). Lastly, waiting for a child to die is a basic form of synchronization and 
communication (by the exit status of the child).

This form of inter-process communication is used every time a command 
line is entered through shell, shell forks the requested program, and then 
waits for it (or any other of its child processes) to die. When it dies, shell 
reports its exit status to the user if it is not zero, shell provides variations on 
the use of this basic mechanism: concurrently executing processes ('&' and '!'), 
implicit forking of another shell (parentheses), and waiting for one or all 
children to die ('w' and 'wait').

A process is forked using the F$Fork system call. The parent process 
specifies the name of the program module, or the name of the file from which 
the program module is to be read (relative to the parent process’s current 
execution directory). The parent also passes a pointer to a parameter string 
and the length of the string, the number of paths the child should inherit 
from the parent (usually three), and (optionally) an additional static storage 
size and process priority. The kernel adds the parameter string length to the 
data storage size specified in the program module header, the stack size in 
the program module header, and the additional static storage specified in the 
fork request, to make the total static storage size to allocate for the child. 
The kernel copies the parameter string to the top of the child process's static 
storage.

In effect, the parameter string is a message passed from the parent to the 
child process. The parameter string can be any byte string, although an 
ASCII text string or sequence of strings is usually used. The Microware C 
library functions os9fork() and os9forkc() allow the F$Fork system call to 
be made from C. The difference is that os9forkc() allows the programmer to 
specify the number of paths to inherit, while os9fork() implicitly asks for 
three paths to be inherited. However, the library also provides a higher level 
function - os9exec() - that converts an array of text strings together with 
the environment parameter strings of the parent into a single parameter 
string compatible with F$Fork. The 'cstart' function, which is the startup 
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function of a compiled C program, converts this string back into an argument 
array and environment parameter array, as expected by a C program.

The forked process is immediately put in the active queue, and so will be 
allocated processor time in its turn. Therefore the parent cannot assume that 
it can execute further instructions between the fork request and the child's 
first slice of processor time. It is quite possible that the parent process will 
finish its time slice during the fork system call, and that the new child 
process will start execution immediately the call is finished.

Below is an example forking of a child program, specifying three paths (0, 1, 
and 2) to be inherited and no additional static storage memory. The process 
priority value of zero specifies that the child process should have the same 
process priority as the parent. Note that by convention (for C programs) the 
first argument string is the name of the program, although this has no effect 
on the F$Fork system call or the os9exec() library function.

char *args[]=(

extern char **env1ron; /* environment parameter array */

"tmode", /* program name */
"nopause", 
"noecho",

/* argument strings */

NULL /* NULL pointer terminates the 11st */
1;
1nt ch1ld_p1d. /* child process ID */

dead_1d. /* process ID of dead child */
status: /* child exit status */

1nt os9fork();

/* Fork the child (could be one of many): */ 
void fork_ch11d() 
(

ch1ld_p1d=os9exec(os9fork,args[0],args,env1ron,0,0); 
pr1ntf("Forked process ID %d\n”,ch11d_1d);
/* Walt for child (could be any child) to die: */ 
dead_1d=wa1t(4status):
pr1ntf("Process ID Xd died with exit status Xd\n",dead_1d,status);

)

The F$Wait system call, called by the wait() C library function, waits for 
any process that is a child of this process to die. The system call returns the 
process ID of the dead child, and its exit status code. A non-zero exit status 
is usually considered an error, but as this is only interpreted by the parent it 
can be used instead to return a result value. Note that the parent cannot 
specify which child it is waiting for, and that the parent can be woken 
instead by a signal, in which case the reported child ID and exit status are 
zero. Therefore if the process has forked more than one child it will need to 
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check which child has died, and if it has installed a signal intercept handler 
(see the section on Signals) it will need to check whether it was woken by the 
death of a child or by a signal.

A process cannot "miss" the death of a child, even if it is not waiting when 
the child dies, or more than one child dies simultaneously. Although all of 
the resources of the child are de-allocated by the kernel when the child dies, 
the child's process descriptor is retained until the parent process executes an 
F$Wait system call and is returned the exit status of the child, or the parent 
process itself has died. This guarantees that this form of inter-process 
communication cannot fail.

The F$Fork system call can be used from system state. For example, a 
device driver can fork a process. In this case the parent of the new process is 
the current process, that is, the process that made the system call as part of 
which the child was forked. As the device may later be used by other 
processes it may be desirable to disinherit the process (make it an orphan) by 
cutting the links to the parent process. This is described in the chapter on 
Multi-tasking.

8.5 SIGNALS
An OS-9 signal is a small transitory message sent from one process to 
another. It can be viewed as the software equivalent of a one word telephone 
call - it wakes you up if you were asleep, interrupts what you were doing, 
and gives you a small piece of information as to the reason for the call. It is 
very important to distinguish between signals and interrupts (a common 
source of confusion). A signal is purely a software mechanism, while an 
interrupt is a hard-wired response of the microprocessor to an external 
electrical signal. The confusion arises because, under OS-9, both cause an 
asynchronous change of flow of control of software, and both can be 
"masked". However, there the similarity ends, and the two mechanisms are 
completely separate.

The F$Send system call is used to send a signal from one process to another, 
or to all processes of that user (a broadcast signal). It requires knowledge of 
the process ID of the destination process, unless the signal is broadcast. The 
sending process must have the same user ID and group number as the 
receiving process, or be a super user (group zero). Sending a signal has two 
important effects on the destination process:
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a) The process is made active if it is not already active, and so 
will become the current process at some time in the future (it 
may already be the current process).

b) The process's signal handler function is called when the 
process next runs in user state.

It is important to bear in mind that at the moment the signal is sent - either 
from another process or an interrupt handler - the destination process 
cannot be executing in user state, even if it is active, and even if it is the 
current process. Even if the process sends a signal to itself, the sending of the 
signal is carried out in system state by the F$Send system call. Therefore 
once the signal has been sent, the process's signal handler function will be 
the next part of the program to execute (after any system call the program is 
making finishes), even if the program was active and only part of the way 
through a subroutine.

Under OS-9, the signal mechanism is the only inter-process communication 
mechanism that can cause such an asynchronous change of flow of control. 
Also, signals are the only way of waiting for multiple sources of 
synchronization without polling, because a signal forces a process to become 
active. Once the signal handler function finishes, execution of the program 
continues as before. If the process was sleeping or waiting, execution 
continues with the instruction following the "sleep" or "wait" system call.

If the destination process was executing a system call, the signal handler 
function of the process is not called until the system call finishes (the process 
returns to executing in user state). If the process was sleeping within a 
system call (for example, in a device driver, waiting for an interrupt), the 
process is woken and continues execution after the sleep system call. A signal 
makes a process active irrespective of its previous state (and is the only way 
of waking a process from an untimed sleep). Therefore a signal will wake a 
process that is, for example, waiting for an event, or waiting for a child to 
die. So, on return from such "waiting" system calls it is important to check 
the reason for the return from the system call - did the system call finish for 
the intended reason, or was a signal received?

When a process is about to continue execution in user state (after completion 
of a system call or an interrupt) the kernel checks whether a signal is 
pending for the process. If a signal is pending, the kernel checks whether the 
process has installed a signal handler function. If so, the kernel builds an 
additional stack frame on the process's stack so that execution will be 
diverted to the signal handler function, exactly as if the program had made a 
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subroutine call to the signal handler. On return from the signal handler the 
program continues execution as before.

A process may receive multiple signals before becoming the current process. 
The signals are queued (within the recipient's process descriptor) in the 
order in which they have been received. The P$Signal field of the process 
descriptor contains the latest signal code received1, or zero if no signals are 
pending. A signal handler function should end with an F$RTE system call, 
rather than a "return from subroutine" instruction. This system call does 
very little, but its exit causes the kernel to check again whether a signal is 
pending for the process, and call the signal handler function again if so. In 
this way all pending signals are handled before normal program execution 
recommences. Note: the "wakeup" signal S$Wake and the "kill" signal S$Kill 
are not queued - see below.

1 Before OS-9 version 2.4, the P$Signal field contained a copy of the first signal in the 
queue - the oldest pending signal - or zero if no signals were pending.
z Before OS-9 version 2.4, only signal codes 2 and 3 were considered deadly.

A process installs (or cancels) a signal handler function using the F$Icpt 
system call. If a program intends to handle signals, installing the signal 
handler function should be one of the first instructions in the program. The 
process will be aborted if it does not have a signal handler function installed 
when the process is about to execute in user state and a signal is pending 
(except for the "wakeup" signal S$Wake - see below). The "kill" signal 
S$Kill cannot be handled - it always aborts the receiving process.

The signal intercept routine is passed the signal code (in the low word of the 
dl register), and the number of signals queued including the current one (in 
the low word of the dO register). It is not passed the process ID of the sender.

The C library function interceptO is used to install a signal handler 
function in a C program. The signal handler is a normal C function. The 
interceptO function ensures that the F$RTE system call is made on exit 
from the signal handler function. Passing a null pointer (zero) instead of a 
function address cancels any currently installed signal handler for the 
process.

The signal codes 2 to 31 are known as the "deadly" signals2. Device drivers 
that are sleeping (waiting for completion of a device operation) will normally 
abort their operation and return to the caller with an error if woken by such 
a signal, unless this might be destructive to a filing system. Signals 2 to 32 
can be ignored, by setting the corresponding bit in the P$SigMask field in 
the process descriptor (signal 32 is ignored by setting bit zero). This function 
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is not available through a standard system call. Ignored signals are not 
queued, and do not cause the receiving process to become active.

Signal code 0 - S$Kill - is the "kill" signal. It is not queued. Instead, the 
kernel sets the "condemned" flag in the P$State field of the process 
descriptor. When the process is about to restart execution in user state it is 
unconditionally terminated. The name "kill" can cause confusion to C 
programmers, as the C library function kill() is the C function for sending 
signals. The C function is called kill() for compatibility with the UNIX 
standard C library, but it is used to send any desired signal code.

Signal code 1 - S$Wake - is the "wakeup" signal. It is specifically intended 
for use by an interrupt handler to wake up a sleeping device driver (or other 
operating system component). It should not be used to signal a user state 
program, as its special properties do not guarantee proper inter-process 
synchronization. This signal is not queued, and so does not cause the 
recipient’s signal handler function to be called.

8.5.1 Masking Signals

In order to guarantee correct inter-process synchronization, avoiding the 
possibility of a timing "race” condition, it is important to be able to "mask" 
signals, in the same way that interrupts can be masked. That is, the response 
to the signal can be held off until the process is ready to respond. Signals - 
except the "kill" signal - can be masked using the system call F$SigMask.

This system call increments, decrements, or clears the signal mask field 
P$SigLvl in the caller's process descriptor. While this field is non-zero 
signals sent to the process are queued in the recipient's process descriptor 
(except the "kill" and "wakeup" signals) and force the process into the active 
queue as normal, but the process's signal handler function is not called until 
signals are unmasked.

The F$SigMask system call takes a single parameter, which must be -1, 0, 
or 1. If the parameter is zero the field P$SigLvl in the process descriptor is 
cleared (signals are unmasked). If the parameter is one P$SigLvl is 
incremented (unless it is already 255). If the parameter is minus one 
P$SigLvI is decremented (unless is is already zero). This approach allows 
calls to mask signals to be nested. The kernel masks signals (increments 
P$SigLvl) for the process before calling the process's signal handler function 
(the signal mask must have been clear for the kernel to decide to call the 
signal handler), and unmasks signals (decrements P$SigLvl) on return from 
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the signal handler function, as part of the F$RTE system call. This ensures 
that the signal handler function will not be called recursively.

If the signal handler function increments the signal mask, the mask will not 
return to zero when the kernel decrements it, so any other pending signals 
are not serviced until the program clears the signal mask. This permits the 
main body of the program to respond to signals one at a time3.

Q
This facility was not available prior to OS-9 version 2.3 - the F$RTE system call called 

the program's signal handler function again if another signal was pending, without checking the 
signal mask.

Executing the system call F$Sleep (timed or indefinite sleep) or F$Wait 
(wait for child to die) from user state clears the P$SigLvl signal mask. 
Therefore the following sequence works correctly as a user state 
inter-process synchronization mechanism, without the risk of a "race" 
condition:

1) Mask signals using F$SigMask.
2) Check a flag set by the signal handler function indicating that 

a signal has been received.

3) Sleep using F$Sleep.

An example in C is shown below.
1nt gotlO, /* flag - signal 10 received */

got_20, /* flag - signal 20 received */
Invalid; /* flag - invalid signal received */

slghandler(s) /* the signal intercept handler */
register 1nt s; 
(

/* s1gnal code received */

switch (s) ( /* record which signal has arrived */
case 10:

got_10=TRUE;
break;

case 20: 
got_20=TRUE; 
break;

default: 
1nvalid=s; 
break;

)
)
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main() 
(

while (TRUE) (
slgmask(l); /* mask signals */
if (got_10 || got_20 || Invalid) { 

slgmask(O): /* unmask signals */
if (got_10)

pr1ntf("Received signal 10\n");
else 1f (got_20)

pr1ntf("Rece1ved signal 20\n“);
else ex1t(_errmsg(l,"Invalid signal %d received\n". 

Invalid));
) 
el se 

tsleep(O); /* sleep until woken */
)

)

In the above example, signals are masked before checking whether a signal 
has already arrived. Once signals are masked the signal handler function will 
not be called even if a signal arrives, so the flags cannot be set between 
making the check and going to sleep. Calling the F$Sleep system call (via 
the tsleepO or sleepO C library functions) unmasks signals4 and checks for 
any signal pending. If a signal is pending the process is not suspended - the 
system call returns immediately. Otherwise the process is put in the sleeping 
queue. The kernel performs these actions with interrupts masked, so even if 
the signal is to come from an interrupt handler function these steps are 
indivisible - a signal cannot arrive between checking for signals and going to 
sleep.

4 Unless the system call is made from system state.

This check for a pending signal is not just a check of whether the P$Signal 
field (most recently received signal code) of the process descriptor is not zero. 
If this were done, a device driver, or other operating system component, 
woken from a sleep by a signal being used for inter-process communication, 
would not be able to go back to sleep again (waiting for a signal from an 
interrupt service routine), because the pending signal would cause the 
F$Sleep system call to return immediately. Therefore the kernel sets a flag 
in the process descriptor (bit 7 of the P$SigFlg field) whenever a signal is 
received when the process is active. User state calls to "sleep", "wait for 
child", or "wait for event", clear this flag, but calls made in system state do 
not. Before suspending the process these calls check whether this flag is set. 
If so, the flag is cleared, but the process is not suspended - the system call 
returns immediately. In effect, in system state this flag indicates that the 
process has received a signal since the last "sleep"; "wait for child", or "wait 
for event" system call. Thus a system state function is only woken once by 
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each signal, and can go back to sleep even though a signal is pending in the 
process descriptor.

If the "sleep", "wait for child", or "wait for event" system call is made from 
user state, the system call clears bit 7 of the P$SigFlg field immediately. 
However, it then checks whether there is a signal pending (the P$Signal 
field of the process descriptor is not zero). If so, it sets the bit. This is 
detected by the main body of the system call routine (common to calls from 
system state and user state), which - as described above - returns 
immediately to the caller. Thus any pending signal causes the process to 
continue execution. Note, however, that the "wakeup" signal (S$Wake - code 
1) is not queued, nor is it put in the P$Signal field - it just causes bit 7 of 
the P$SigFlg field to be set. Therefore a call to "sleep", "wait for child", or 
"wait for event" made from user state cannot detect this signal. The process 
will be suspended even if this signal was received since the last "sleep" call, 
unless the call is made in system state and there has been no intervening call 
made from user state. Thus the "wakeup" signal is not suitable for 
inter-process communication - it is intended only to be used by an interrupt 
service routine waking up an operating system component.

This somewhat complex distinction between the effect of these calls in user 
and system state reflects the fact that to the user state program these are 
inter-process communication mechanisms, but to an operating system 
component (such as a device driver) they are mechanisms for communication 
between an interrupt service routine and a process.

As described above, the F$Wait system call performs the same operations as 
the F$Sleep system call with regard to pending signals, but note that prior 
to OS-9 version 2.3 the F$Wait system call tested for a pending signal by 
checking the P$Signal field directly, rather than using bit 7 of the 
P$SigFlg field, so it was not suitable for use from system state.

Note that the "wait for event" system call does not clear the signal mask, but 
it does check for a signal pending5. If a signal is pending, the system call 
returns immediately to the caller (in which case the returned event value is 
the current event value). Note also that if a process waiting for an event 
receives a signal while it has signals masked (the P$SigLvl field is not zero), 
the process is still forced active, but the signal handler function will not be 
called - the process continues execution with the instruction following the 
"wait for event" system call. This means that if a process makes a "wait for 
event" system call with signals masked, but a signal is pending or is received 
before the event changes to the desired range, the "wait for event" terminates 

5 From OS-9 version 2.3 onwards.
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and the process is returned the event value at the time it made the "wait for 
event" call (which will be outside the desired range), but the program's signal 
handler function is not called (until signals are unmasked).

Before OS-9 version 2.3 there was no C library function for the F$SigMask 
system call, so one is given in assembly language below:

#asm 
sigmask: move.l dO.dl 

moveq #0,d0 
os9 FSSig 
rts

#0,d0 
FSSigMask

copy mask value (0, 1. or -1) 
dO must be zero 
execute the system call

#endasm

8.5.2 Signals - Cautions

This section covers particular details of the operation of signals that are most 
commonly the source of problems when using signals.

The "wakeup" signal S$Wake is not queued. If it is received while the 
process is in system state it is lost on return to user state, and so is not 
suitable for inter-process synchronization. It is primarily intended as a 
mechanism by which an interrupt handler function can wake up a sleeping 
device driver (or other system state component).

The F$Sleep and F$Wait system calls return to the calling process 
immediately if a signal is pending. In system state, a pending signal will only 
cause a process to wake up once - a further signal must be received to wake 
the process from a subsequent "sleep" system call made before returning to 
user state.

The signal intercept handler function is called when a process with a signal 
pending is about to return to user state (it becomes the current process, or - 
if it is already the current process - it returns from a system call or an 
interrupt service routine finishes). Therefore system state processes cannot 
make use of a signal intercept handler function.

8.6 EVENTS
OS-9 events are another mechanism for inter-process synchronization. 
OS-9 events are similar to signals in a number of ways:

a) An event is used for inter-process synchronization.

b) An event passes a small amount of data - the event value.
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c) Events can be used from interrupt handler functions.

However, events differ from signals in some important respects:

a) An event cannot cause a temporary change of flow of control 
- there is no equivalent to the signal handler function.

b) A process cannot be woken by an event when waiting for 
something else - a process can only be woken by an event 
when waiting for that event to change.

c) Events are public - any number of processes can link to an 
event, and alter the event value or wait for it to change.

d) Events are more flexible than signals - the event value can 
be changed in a number of ways, and a process can wait for 
the event value to change to within a desired range.

e) Events are not transitory - an event exists even when not 
being changed or waited for, and its current value can be 
read.

To use an event it must first be created. A system call is used to create an 
event, giving a name (character string) for the event, and an initial value for 
the event. The name can be up to 12 characters, and is subject to the same 
restrictions as module names. Letter case is not significant. The kernel finds 
a free entry in the event table (checking that no event of the same name 
already exists), and initializes the entry.

The event is allocated an event ID. This is a long word, of which the high 
word is the event number from the high word of the D_EvID field of the 
System Globals (after it has been incremented), and the low word is the 
index (base zero) of the event entry within the event table. Before creating 
the event ID the kernel increments the high word of the D_EvID field. The 
kernel does not permit the high word of the D_EvID field to be zero (if it 
becomes zero it is set to one), so the event ID cannot be zero. The event table 
is dynamically extendible, so the number of events in existence at any one 
time is not limited. The caller creating the event is returned the event ID (or 
an error if an event of the same name already exists).

The event table entry also contains a link count (initialized to one when the 
event is created), a "signal increment" (also known as an "automatic 
increment"), and a "wakeup increment". The event value is a signed long 
word and the increment values are signed words. The increment values are 
specified when the event is created. The "signal increment" (nothing to do 
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with OS-9 signals) is added to the event value when the "signal event" call is 
made. This is a convenience, being simpler to use than an explicit change to 
the event value. The "wakeup increment" is added to the event value when a 
process is woken from waiting on an event because of a change to the event 
value.

Once an event has been created, other processes can get the event ID by 
making a "link to event" call, specifying the event name. Each such call 
increments the event link count, in a similar manner to the link count of an 
OS-9 module directory entry. Similarly, once a program has finished with an 
event it makes an "unlink from event" call, which decrements the link count 
for the event. Once the link count has been reduced to zero the event can be 
deleted by a "delete event" call, which frees the event table entry. Because an 
event could be unlinked more than once by the same process, reducing its 
link count to zero even though other processes are waiting on the event, the 
kernel will wake up any processes waiting on an event that is being deleted 
(returning them an "invalid event ID" error - E$EvntID). Note that when a 
process is terminated the kernel does not automatically unlink or delete any 
events a process may have linked to or created.

A process that has the event ID can make use of the event in three ways:

a) Read the current event value.

b) Change the event value.

c) Wait for the event value to fall within a specified range.

Whenever the event value is changed, the kernel function that makes the 
change checks whether the new event value falls within the specified range 
of any process waiting on the event. If so, the kernel wakes up the waiting 
process, returning it the new event value that caused it to be woken, and 
then adds the wakeup increment to the event value.

A flag (bit 15 of the event function sub-code) is passed with each call to 
change the event value. This flag indicates to the kernel if it should wake up 
all processes waiting on the event for which the new value falls in the 
process's specified range (group wakeup), or only the first such process in the 
queue of processes waiting on the event (individual wakeup). For an 
individual wakeup the kernel wakes up the first process in the queue for 
which the event value is now in range - this may not be the first process in 
the queue. Processes are queued on an event in the chronological order in 
which they made the "wait for event" calls.
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Note that the wakeup increment is added to the event value as soon as a 
process is woken, changing the event value for the check of subsequent 
processes in the queue during a group wakeup. Also note that processes 
earlier in the queue are not rechecked if the wakeup increment causes a 
change to the event value. It is therefore possible for a process to remain in 
the queue even though the event value now falls within its range.

The event value can be changed in four ways:

a) Set a new absolute value.

b) Specify a signed integer to add to the event value - "set 
relative".

c) "Signal" the event - adds the "signal increment" to the event 
value.

d) Pulse the event temporarily to an a new absolute value.

Each call to change the event value takes the individual/group wakeup flag 
(as described above). The calls are returned the event value as it was before 
the call, in the did register6. If the "pulse" feature is used, the kernel sets the 
new event value and checks the queue of waiting processes in the normal 
way, but restores the event value back to its previous value before returning 
to the caller.

6 From OS-9 version 2.3 onwards.

A process can wait for an event in two ways. Both specify a range - signed 
minimum and maximum values. One method specifies the range as absolute 
values. The other specifies the range as values relative to the current event 
value. The process will be woken when the event value is changed to fall 
within the specified range, unless the change is made with the "individual 
wakeup" flag, and the waiting process is not the first in-range process in the 
queue on the event. Also, due to the sequential nature of the group wakeup 
(described above), and to the immediate wakeup (described below), if the 
wakeup increment is not zero it is possible for a process to remain in the 
event queue even though the event value now falls within the desired range.

If a process attempts to wait for an event that is already within the specified 
range, the system call returns immediately to the caller. In this case the 
wakeup increment is applied to the event value as usual, but the kernel does 
not check the event queue to see if the new event value (assuming the 
wakeup increment is non-zero) is now in range for any waiting process.
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A single system call F$Event is used for all the event functions. The 
required function is specified by a sub-code. The C library provides separate 
C functions for each event function. The following table shows the functions 
available, with the C function name and the assembly language sub-code 
name. The sub-codes are defined in the file 'DEFS/funcs.a'.

Sub-code C function Description

EvJCreat _ev_create Create an event (must not already exist).

EvSDelet _ev_delete Delete an event (link count must be zero).

Ev$L1nk _ev_l1nk Link to an existing event.
EvtUnLnk _ev_un!1nk Unlink from an event.
Ev$Wa1t _ev_wa1t Wait for event - absolute maximum and minimum values.
Ev$Wa1tR _ev_wa1tr Wait for event - maximum and minimum values relative to 

the current event value.
EvSSet _ev_set Set new event value.
EvJSetR _ev_setr Add signed quantity to event value.

Ev$S1gnl _ev_s1gnal Add “signal increment' (set when event created) to event 
value.

EvtPulse _ev_pulse Momentarily change event value.

Ev$Read _ev_read Read current event value.
EvSInfo _ev_1nfo Read (next) event table entry structure.

A process waiting on an event may be woken by a signal. This is not
considered an error - the process is returned the event value at the time the 
signal is received, and can detect that it was woken by a signal (rather than 
by an appropriate event value) in one of two ways:

a) The program's signal handler function sets a flag.

b) The returned event value is not within the requested range 
(the program is returned the event value that existed when it 
made the "wait" call).

The "wait for event" function does not clear the process's signal mask 
(P$SigLvl field of the process descriptor). If the signal mask is not zero, a 
pending signal will keep the process active, or a subsequent signal will wake 
the process, but the process's signal handler function will not be called until 
the process clears the signal mask.

Note that prior to OS-9 version 2.3 the "wait for event" function did not 
check whether a signal was already pending - the process would be put to 
sleep even if a signal was received while the "wait for event" function was 

153



INTER-PROCESS COMMUNICATION

being executed. A process wishing to wait for an event or a signal to occur 
might not have responded to the signal until the event occurred.

8.6.1 Using Events

It may be seen from the above description that events are very flexible, and 
can be used in many different ways. Indeed, the only problem with using 
events is in deciding what technique is appropriate to a given situation. This 
section aims to reduce the possible confusion by describing some typical 
techniques.

The features available with OS-9 events have been very carefully chosen7. A 
very wide range of simple and complex inter-process synchronization 
algorithms can be implemented by a simple use of events, if the method of 
use is carefully chosen. In general, only a very few event statements are 
needed for even very complex algorithms. Therefore if your implementation 
of the algorithm in your application appears to require a complex or 
convoluted use of events it is worth reconsidering your approach.

n
Although one or two useful functions are not available, such as an indivisible "set event and 

wait".

In choosing a particular technique the principal aim must be secure 
operation (as with all forms of inter-process communication). That is, there 
must be no possible condition under which the mechanism will fail and cause 
the application to lock up or lose data. The features of OS-9 events are 
designed to give this security, provided they are used correctly. As with all 
system calls, event functions are indivisible - another process cannot be 
scheduled in while the call is executing, unless the kernel explicitly goes to 
sleep (such as during a "wait for event" call). Also, the kernel masks 
interrupts during critical code fragments, so events can be used from 
interrupt handlers (but not "wait for event"!).

8.6.2 Pulsing an event

In its simplest form an event can be used in the same way as a signal, except 
that an event does not cause the asynchronous execution of a handler 
function, nor can it wake a process that is not waiting on the event. One 
process creates the event, and another process links to the same event. The 
initial event value is set to zero, and the wakeup increment is set to zero. The 
process "receiving" the event waits for the event to reach a value of one 
(minimum value of range is one, maximum is one). The process "sending" the 
event pulses the event value to one.
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In this simple technique the event is transitory - its value is always zero, 
except during the "pulse event" system call. In fact, this use of events is not 
secure - event changes cannot be made pending (equivalent to masking 
signals), so a process could decide to wait for an event that has already 
occurred. For this reason the "pulse event" technique should always be used 
with some form of handshaking, so that the "sending" process does not "send" 
the event until the "receiving" process is ready.

8.6.3 Interlocked handshake

A common use of events provides an interlocked handshake between two 
processes. For example, one process may place a data item in a data module, 
wake up another process by signalling an event, and then wait for the 
process to take the data. This can be done with complete security by using 
positive and negative event changes.

The event is created with a value of zero, and signal and wakeup increments 
of zero. The receiving process waits for the event to have a value of one 
(minimum is one, maximum is one). The sending process increments the 
event by one, changing the event value to one, which wakes up the receiving 
process. The sending process then waits for the event to have a value of zero.

When the receiving process has taken the data, it decrements the event value 
by one (adds minus one), changing the event value back to zero and waking 
up the sending process. There is no need for masking (which is not available 
with events) because the event value persists until changed, and a process 
attempting to wait on an event whose value is already in the desired range is 
immediately re-activated. Notice that this mechanism requires only two 
event statements in each program - a "wait for event" and a "set event 
relative". The equivalent algorithm implemented with signals would be 
significantly more complex.

8.6.4 Buffered handshake

The interlocked handshake described above is for the limited case of a single 
item of data being passed by the handshake. The event statements changing 
the event value could have explicitly set the event to one and zero instead of 
incrementing and decrementing it. It is in fact a subset of the more general 
case of a buffer of several items.

To enable a continuous flow of data, a buffer of two or more items may be 
used. As in the case of a single item, the buffer could conveniently be in a 
data module. For a multi-item buffer the sending process should only wait if 
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the buffer becomes full, and the receiving process should only wait if the 
buffer becomes empty. The mechanism is the same as for the single buffered 
case above. The event is created with a value of zero, and wakeup and signal 
increments of zero.

The sending process waits for the event to be in the range zero to "one less 
than the buffer size" - it will already be in this range unless the buffer is full. 
The sending process then adds the new item to the buffer and increments 
the event. The receiving process waits for the event to be in the range one to 
"the buffer size" - it will already be in this range unless the buffer is empty. 
The receiving process then takes the first item out of the buffer, and 
decrements the event.

Care must be taken in the use of variables for manipulating the buffer. An 
effective mechanism is to use a circular buffer in a data module, with next-in 
and next-out indices also in the data module. Only the sending process 
updates the next-in index, and only the receiving process updates the 
next-out index.

8.6.5 One to many synchronization

In this example one process writes data to a global pool (for example a data 
module), and multiple processes read the data. The sending process must not 
write new data until all receiving processes have read the data. The sending 
process wakes up all processes that were waiting for the data, and then itself 
waits until they have all accepted the data. The mechanism described below 
will work for any number of receiving processes, including zero (which can 
be useful for test purposes).

The event is created with a signal increment of minus one and a wakeup 
increment of one. The sending process writes new data to the data module, 
then sets the event to some large value (greater than the maximum number 
of waiting processes) - 1000 in this example. This wakes up all the waiting 
processes - they have been waiting for the event to have a value equal to or 
greater than 1000. Note that the call to change the event value specifies the 
EV_ALLPROCS group wakeup flag, to wake all waiting process for which 
the event value is now in range (a flag of zero would be specified for a 
single-process wakeup).

Because the wakeup increment is one, the event value is now equal to 1000 
plus the number of processes that were waiting (and have now been woken). 
The sending process now subtracts the same large number (1000) from the 
event value. If the receiving processes have not yet changed the event value, 
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it will now be equal to the number of processes that were waiting. The 
sending process waits for the event value to be zero - which will already be 
true if no processes were waiting.

Each receiving process takes the data, and then decrements the event value - 
in this example by using the "signal increment" of minus one set when the 
event was created, for convenience. Once all the receiving processes have 
taken the data the event value is reduced to zero, and the sending process is 
woken. This final wakeup changes the event value to one, but this does not 
affect the mechanism, as the sending process will set it to an absolute value 
of 1000 when new data is ready.

This algorithm requires that the receiving processes be ready and waiting 
when new data is available. This is a common requirement where the 
sending process is gathering data at a fixed rate, and cannot delay if a 
receiving process is not ready. A check (such as a packet number in the data) 
would be used by the receiving processes to report an error if data is missed.

The sending process:
new_data(): /* write the new data */
/* Wake up all waiting processes: */
_ev_set(event_1d,lOOO,EV_ALLPROCS): /* value = 1000 */ 
_ev_setr(event_1d,-1000,0);
/* Value now = number-who-were-wa1t1ng */
_ev_wa1t(event_1d.0,0); /* wait until value = 0 */
/* Event value 1s now one (after our wakeup Increment) */

The receiving processes:
/* Walt until the value 1s set: */
_ev_wa1t(event_1d,1000,5000);
take_data(); /* get the new data */
_ev_s1gnal(event_1d,0): /* decrement the value */

If the sending process must wait for all the receivers to be ready for the data, 
a modified form of the "interlocked handshake" described above can be used. 
The sender must know the number of receivers - stored in the variable 
rx num in the example below. The event is created with a value of zero, a 
wa"keup increment of zero, and a signal increment of one:

The sending process:
_ev_wa1t(event_1d,rx_num,rx_num): /* wait for all receivers*/ 
new_data(); /* write the new data */
/* Wake up the receivers to take the data: */ 
_ev_set(event_1d,0,EV_ALLPROCS); /* value = 0 */
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The receiving processes:
_ev_s1gnal(event_id,0); 
_ev_wa1t(event_1d,0.0): 
take_data();

/* Increment the event */
/* wait for the data */
/* get the new data */

In effect, this is a many-to-one synchronization, with many receivers 
indicating their readiness to one sender, followed by a one-to-many 
synchronization, with the sender broadcasting its readiness to all the 
receivers.

8.6.6 Rendezvous

Two or more processes may need to know that they are at a common point in 
their programs, waiting until all processes are at this "rendezvous". In the 
following example the variable procs holds the number of processes that 
wish to rendezvous. The event is created with a value of zero, a signal 
increment of one, and a wakeup increment of zero. Each program uses the 
same code fragment:

_ev_signal(event_1d,EV_ALLPR0CS); /* increment the event */ 
_ev_wait(event_1d,procs,procs); /* wait for all processes */

After the rendezvous the event value must be reset back to zero by one of the 
processes:

_ev_setr(event_1d,-procs,0); /* reset the event */

There exists the possibility that this process, woken as a result of the event 
value change caused by the last process to come to the rendezvous, will reset 
the event value before that last process is able to execute its "wait for event" 
function. This problem exists because the OS-9 events system does not 
provide a single call to "change the event value and wait". This problem may 
be ameliorated by giving a low process priority to the process that resets the 
event value, so it is unlikely to "cut in" to the instruction sequence of the last 
process to join the rendezvous.

8.6.7 Semaphore

An event can be used to control access to a shared resource, such as a data 
module. A process wanting to use the resource must be made to wait until 
the resource is free. A process finishing with the resource must wake up the 
first process in the queue of processes waiting to use the resource. The event 
is effectively used as a "lock" or "semaphore" on the resource.

The event is created with a value of zero, a wakeup increment of one, and a 
signal increment of minus one. A process wanting to use the resource waits 
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for the event to have a value of zero. The wakeup increment automatically 
sets the event value to one, locking out any other process wanting to use the 
resource. When the process has finished with the resource it "signals" the 
event, setting it to one, using the "single process wakeup" mode so that only 
the first process in the queue is woken.

_ev_wa1t(event_1d.0,0); /* wait for the resource */
/* The event value 1s now one: */
use_resource(); /* make use of the resource */
_ev_s1gnal(event_1d,0): /* unlock the resource */

8.7 PIPES
A pipe is a "first-in-first-out" (FIFO) data store managed by the operating 
system. One or more processes write to the pipe using the standard I/O 
writing functions, and one or more processes read from the pipe using the 
standard I/O reading functions. The data is a byte stream - bytes are read 
from the pipe in the chronological order in which they were written to the 
pipe. Once one process has read a byte, the byte is lost from the pipe. When 
as many bytes have been read as were written, the pipe is empty - more 
bytes must be written before any more can be read. The pipe is of finite size. 
It becomes full if the number of bytes written exceeds the number of bytes 
read by the pipe size - no more bytes can be written until some have been 
read.

Because data is lost once read, and is read in strict chronological order, a pipe 
normally has only one reading process even if there are multiple writing 
processes. Multiple reading processes cannot know which process will read 
which data element, unless some other synchronization mechanism (such as 
an event) is used.

OS-9 pipes are memory buffers only (they are not held on disk). Pipes are 
managed by the pipeman file manager. Because pipes are held in memory 
there is no need for a device driver to manage an I/O interface. However, the 
OS-9 I/O system requires a device driver for every device. Therefore the 
device driver null8 is needed in memory for pipes to operate, but its 
functions do nothing. The device descriptor for pipes is pipe. Pipes are 
created by creating a path to the device '/pipe' using the normal I/O path 
creation functions.

Q
piper prior to OS-9 version 2.3.

A pipe may be created as a "named" pipe or as an "unnamed" pipe. An 
unnamed pipe is created if the path is created on the device name alone, by a 
"create" or "open" system call:
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path=create("/pipe",S_IREAD|S_IWRITE.S_IREAD|S_IW RITE >; 
path=open("/pipe",S_IREAD|S_IWRITE);

A named pipe is created if the path is created with a second name element, 
using the "create" system call - similar to a single-level disk directory:

path=create("/pipe/fred",S_IREAD|S_IWRITE,S_IREAD|S_IWRITE);

Once a named pipe has been created it can be opened using the same path 
name:

path=open(" /p1pe/fred’,S_IREAD|S_IWRITE);

By default the pipe file manager uses spare room in the path descriptor for 
the pipe buffer - 90 bytes. However, specifying an "initial file size" when 
creating the pipe (as would be done for a disk file) causes the file manager to 
allocate a separate buffer of the requested size, so pipes can be as large as 
needed. The actual size of the pipe buffer allocated may be greater than the 
requested size - the request is rounded up to the nearest multiple of the 
process minimum allocatable block size (16 bytes). Thus:

path=create("Zp1pe",S_IREAD|S_IWRITE|S_ISIZE,S_IREAD|S_IWRITE,1000); 

will create a pipe buffer of 1008 bytes.

The pipe file manager connects multiple paths open on a named pipe so that 
they refer to the same memory buffer. In this way multiple processes can 
read and write the same pipe. The only way for multiple processes to access 
the same unnamed pipe is for the processes to inherit the path to the pipe, by 
being forked by a process that already has a path open to the pipe. That is, 
multiple paths cannot be open to an unnamed pipe - only multiple 
duplications of the same path permit multiple accesses to the pipe.

Implicit in this basic distinction between named and unnamed pipes are 
several differences in the details of operation, which are described below. 
Unnamed pipes are essentially a mechanism for connecting the standard 
output of one process to the standard input of another without the need for 
the processes to know that the path is not to a terminal. The features of 
pipes, and unnamed pipes in particular, reflect this requirement.

Pipes provide for data passing as well as inter-process synchronization. 
Reading from an empty pipe causes the process to be suspended until 
another process writes to the pipe, unless no other paths (or duplications of 
this path) have the pipe open for write, in which case the reader is returned 
an end-of-file error. This gives automatic synchronization between 
connected processes, with a proper end-of-file condition.

A process writing to a pipe when there is insufficient room in the pipe for the 
requested number of bytes is put to sleep until sufficient room becomes 
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available (because data has been read from the pipe by another process). To 
prevent a process "hanging up", writing to an unnamed pipe with no other 
paths (or duplications of this path) having it open for read returns a write 
error (E_WRITE). Thus if the connected reading process dies abnormally 
(for example, it is killed by the user), the writing process receives an 
indication of this condition, and can report an error or terminate itself.

This does not apply to named pipes. A named pipe can remain in existence 
even if there are no paths open to it, provided it contains data. Therefore a 
process attempting to write to a full named pipe is put to sleep even if no 
other process currently has the pipe open for reading, in the anticipation 
that another process will subsequently open a path to the pipe and read the 
data. A named pipe is automatically deleted if there are no paths open to it 
and it contains no data. It may also be deleted using the normal "delete" 
operating system call, provided no paths are open to it:

$ del /pipe/fred

The pipe file manager also permits the opening of a directory path on the 
'/pipe' device, allowing the single-level directoiy of named pipes to be read:

$ dir /pipe

If a process receives a "deadly" signal while waiting for a pipe operation to 
complete, pipeman will abort the operation, and return the signal code as an 
error code.

It may be seen that while pipes most resemble an SCF device (such as a 
terminal), named pipes have some of the properties of disk files. However, 
remember that the data has only a transient existence, and may only be read 
in the order in which it was written.

The "Get Status" call SS_Ready can be used to find out how many bytes of 
data are waiting in the pipe (just as for an SCF device). This call is made by 
the C function gs rdy(). Similarly, the "Set Status" call SSSSig requests 
that the process be sent a signal when data is available in the pipe. This call 
is made by the C function ss ssig().

8.7.1 Using Unnamed Pipes

As described above, because an unnamed pipe cannot be opened by name, 
only one path can be open on an unnamed pipe - the path created when 
creating the pipe. Therefore multiple processes can only access the same pipe 
by means of duplications of the path - that is, a process must inherit the 
path from its parent. If a process forks multiple children, or a child forks 
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another process (a "grandchild"), multiple processes can have access to the 
same pipe.

The shell uses unnamed pipes for piping the output of one process to the 
input of another. For example:

$ dir -ud ! grep -v "/$" ! del -z

would be used to delete all files in the current data directory, but not 
attempting to delete sub-directories. The following sequence of operations 
forks two processes, with the standard output of the first process redirected 
to a pipe, and the standard input of the second process redirected to the same 
pipe. The original standard input and output paths of the parent are restored 
to their original paths. To simplify the example all error handling has been 
omitted - in practice every function call should always be checked for an 
error being returned.

copy_1n=dup(0); 
copy_out=dup(l): 
closed):

/* duplicate standard Input path */ 
/* duplicate standard output path */ 
/* close standard output path */

/* Open the pipe. It 1s guaranteed to be path 1 (standard output), as 
the kernel uses the lowest available path number: */

path=create("/pipe".S_IREAD|S_IWR1TE.S_IREAD|S_IWRITE):

/* Fork the first process, passing three paths: */ 
p1d_l=os9exec(os9fork,"progl".argsl,env1ron.0,0);

close(O); /*
/* Duplicate the pipe. The 

(standard Input path): 
dup(l);

close standard Input path */ 
duplicate 1s guaranteed to be path 0 
*/

closed): /* close standard output path (the pipe) */
/* Duplicate the duplicate of the original standard output path, 

restoring the original standard output path: */
dup(copy_out);

/* Fork the second process, passing three paths: */ 
p1d_2=os9exec(os9fork,■prog2”,args2.env1ron.0.0);

close(O): /* close standard Input path (the pipe) */
/* Duplicate the duplicate of the original standard Input path, 

restoring the original standard Input path: */
dup(copy_1n);

/* Close the duplicates of the standard paths: */
close(copy_1n):
close(copy_out);
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8.7.2 Using Named Pipes

Named pipes allow a public use of pipes, and remove the requirement for the 
pipe to be an inherited path. They can also be used in applications where an 
unnamed pipe cannot be used - for example, a program may take a path 
name as an explicit parameter, rather than sending output to the standard 
output path. Within a multi-tasking application a named pipe can be opened 
only as needed. For example, an error logging process may take input from a 
named pipe, which it creates and keeps open. Other processes needing to 
report an error can open the named pipe, write to it, and then close the pipe. 
To prevent an "end of file" error when attempting to read from the pipe, the 
error logging process must duplicate the path (dup() C library function), so 
that the local path number used for reading is not the only incarnation of the 
only path open to the pipe.

Named pipes can help in debugging a multi-tasking application. The 
programmer can display a directory listing of all named pipes to see how 
much data is in each pipe (this appears as the "file size" in the directory 
listing):

$ dir /pipe -e

The programmer can also insert data into the pipe, simulating information 
being sent from another process:

$ echo "action 2" >+/pipe/cornmands
(note the use of the ’>+' redirection to send data to an already existing pipe 
or file). The programmer can also read the contents of a pipe (but remember 
that the data is then lost to the application):

$ dump /pipe/info
Both named and unnamed pipes can be created with an explicit buffer size, 
overriding the default of 90 bytes. This should be done with care. It is 
reasonable to use a large buffer if the data structures being passed are large, 
but it is generally inadvisable to create a buffer that can hold a large number 
of data structures with the aim of relaxing the response time requirement on 
the reading process. The reason is that if the reading process cannot keep up 
with a small buffer, a large buffer will only allow large processing delays and 
will not prevent the eventual failure of the reading process to respond in 
time. However, it is reasonable to use a large buffer if the average rate of 
data is low, but the peak rate can be high - the pipe will absorb the peaks.

One of the potential problems in using pipes in a multi-tasking application is 
the reading process not responding in time, so the pipe fills up and a writing 
process is put to sleep. This may be the desired operation, giving 
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inter-process synchronization, but in many applications it would destroy the 
real time response of the writing process, which must return to its task of 
data collection. Of course, if the reading process does not respond in time this 
may be considered a fatal error, but the writing process must know of the 
error and be able to report it.

To do this the writing process can use the _gs rdyO function to determine 
how much data is already in the pipe. Subtracting this from the pipe buffer 
size gives the free space in the pipe. If this is less than the required amount 
the process reports the error and does not write to the pipe. Be aware that 
this sequence is not indivisible - if there are multiple processes writing to 
the pipe, a process may decide from its check that there is sufficient space to 
write to the pipe, but before it writes its data another process could write to 
the pipe and fill it up. (See the chapter on Multi-tasking for techniques on 
making a sequence of instructions indivisible).

The example below shows a named pipe being created with a defined size. 
The program checks that space is available in the pipe before writing:

#1nclude <modes.h>
#define P_MODE (S_I READ|S_IWRITE|S_ISI ZE)
#def1ne P_PERM (S_IREADjS_IWRITE)

#def1ne P_SIZE 1000 /* size of pipe buffer */
char *p1pe="/p1pe/fred": /* name for named pipe */
char message[80]; /* buffer for data to write to pipe */
ma1n() (

1nt path;
path=create(p1pe,P_M0DE,P_PERM,P_SIZE); /* create pipe */ 
while (1) (

get_data(message): /* build message to send */
1f (_gs_rdy(path)>P_SIZE-strlen(message)) /* enough room? */ 

_errmsg(0,"Pipe overflowin'): /* no */
el se

wr1te(path.message,strlen(message)): /* write message */ 
1

1

8.8 DISK FILES

Disk files provide a sophisticated form of inter-process communication. 
Large amounts of data can be passed, and inter-process synchronization is 
provided by record locking. The data is not transient9 - contrast pipes - and 
is not lost on power-down, even if it occurs while the file is still open (the file 
structure maintained by the RBF file manager is very robust). The 
disadvantages are the lower reliability, slower access speed, and generally

9 Except a volatile RAM disk.
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higher power consumption when compared to semiconductor memory 
(although the effective power consumption per bit stored is low for high 
capacity disk drives).

The record locking provided by RBF ensures inter-process synchronization. 
Note that record locking is not effective for C "file" operations - fread(), 
fwriteO, fprintfO, and so on - because these library functions maintain 
private buffers unknown to RBF. The name "record locking" derives from its 
principal application of databases. A database file (usually) holds an array of 
data structures known as "records". The aim of record locking is to prevent a 
process reading or - worse still - writing back stale data. For example, if 
record locking were not supported, the following disastrous sequence of 
events could take place:

1) Process A reads a record from the file.

2) Process B reads the same record.

3) Process A modifies the record and writes it back to the file.

4) Process B modifies the record and writes it back to the file,
cancelling the modifications made by process A.

Record locking works as follows. Consider two processes which have the same 
file open, and one, which has opened the file in update (read and write) 
mode, performs a read. The other process will be queued if it attempts to 
read some or all of the same data, until the first process rewrites the data, or 
reads or writes a different part of the file (that is, reads or writes another 
record). Note that it is not sufficient for the first process to seek to another 
point in the file - it must read or write (or close the file) for the second 
process to be woken. Because RBF records the start position and length of 
the data read on each path, this record locking works correctly for any size of 
data structure ("record").

A potential problem with record locking is "deadlock". For example:

1) Process A reads a record from file 1.

2) Process B reads a record from file 2.

3) Process A attempts to read the same record from file 2, and is 
put to sleep by RBF.

4) Process B attempts to read the record from file 1 that was 
read by process A, and is put to sleep by RBF.
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This would result in both processes sleeping forever, waiting for the other to 
release a record. RBF checks for this condition, and would return a deadlock 
error (E_DEADLK) to process B at step 4.

RBF implements another form of locking: end-of-file lock. If a process has a 
file open for write, and its file pointer is at the end of the file (so that the 
process is likely to be extending the file), another process reading the file will 
be suspended at end-of-file, rather than being returned an end-of-file 
error. The idea is that the second process should be made to wait until the 
first process has written more data to the file, rather than be told that there 
is no more data in the file. This gives a very useful inter-process 
synchronization during sequential file writing and reading, similar to a pipe. 
The sleeping process is woken with an end-of-file error if the first process 
closes the file.

8.8.1 RAM Disks

Because the OS-9 I/O structure separates the logical file management 
functions from the hardware control functions (into the file manager and 
device driver respectively), it is possible to use a "disk" device driver that 
actually manages an area of memory rather than a disk drive. The device 
driver considers the memory as an array of equal sized blocks - each block is 
the size of a "sector", as specified in the device descriptor. When RBF 
requests that a series of sectors be read or written, the device driver simply 
copies between the buffer supplied by RBF and the corresponding memory 
blocks in the "disk".

A "memory disk" (or RAM disk) has two important benefits:

a) Very fast access.

b) Provides all the functions of disk files (such as record locking) 
without the need for a disk interface or a disk drive 
(relatively unreliable, large, and power hungry).

The disadvantage of a memory disk is the relatively high cost per bit. 
Memory disks are therefore useful for providing inter-process 
communications facilities, the temporary storage of frequently required data, 
and the storage (in non-volatile memory) of permanent data in diskless 
systems.

The RAM disk driver provided by Microware (ram) supports both volatile 
and non-volatile memory disks. Volatile memory is memory that loses its 
contents when the power is removed. In general the main memory of a 
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computer is volatile - usually a type of memory known as "dynamic" RAM, 
which is low cost but uses too much current to be powered from a backup 
battery when the main power is removed. Non-volatile memory does not lose 
its contents when the power is removed. This is usually a special area of 
battery-backed, low power consumption "static" RAM, or ROM (ROM can be 
used for a read-only "memory disk").

The device driver decides that a volatile disk is required if the "port address" 
(M$Port) field in the device descriptor is less than 1024. In this case when 
the device driver is initialized it allocates memory from the main system 
memory, using the standard F$SRqMem memory allocation system call. The 
amount of memory is calculated from the parameters in the device descriptor 
- the number of sectors per track and the number of sectors on track zero 
added together, and multiplied by the sector size (fixed at 256 bytes). The 
device driver then initializes the memory as if the format utility had been 
used, creating an initialized empty "disk". When the device is terminated, the 
termination routine of the device driver de-allocates the memory.

Usually several volatile RAM disk device descriptors are provided (in the 
'CMDS' or 'CMDS/BOOTOBJS' directory). All have the module name rO, with 
various memory sizes specified. The file is given a name indicative of the 
memory size - for example, 'rO 256k' would be for a RAM disk 7r0' with a 
size of 256k bytes. The choice of RAM disk size usually depends on how much 
memory can reasonably be set aside for this purpose. Typically the desired 
device descriptor would be loaded in the 'startup' file.

If the "port address" is greater than or equal to 1024, the device driver 
assumes it is the address of an area of non-volatile memory, not known to 
the operating system's memory allocation functions. An area of memory is 
not known to the operating system if it is not in the memory lists in the init 
configuration module. The device driver initialization function does not 
initialize the memory in any way if the device descriptor is marked as format 
protected (bit 0 of the PD_Cntl field is set) - the format utility must be 
used (provided the memory is writable) with an appropriate alias device 
descriptor that is not format protected.

If the device descriptor is not format protected, and the disk validation field 
(DD_Sync) in sector zero is not correct (it must be $4372757A), the device 
driver initializes the memory. So the first time the memory is used, the 
device driver initializes it, creating an "empty" disk. On subsequent uses the 
device driver does not initialize the memory (unless the disk validation field 
has become corrupted), so files are preserved.

167



INTER-PROCESS COMMUNICATION

A ROM disk is a useful way of providing fixed data to programs on a diskless 
system, where the programs normally expect to be reading disk files. For 
example, the 'termcap' file required by the umacs editor could be stored in a 
ROM disk. A ROM disk can be created with the following sequence of 
operations:

a) Load and initialize a volatile RAM disk device descriptor of 
the desired ROM disk size:

$ load BOOTOBJS/rO_64k
$ iniz /rO

b) Copy the desired files to the RAM disk:
$ dsave -eblOO /rO

c) Save the entire RAM disk to a disk file:
$ merge /rO® -blOO >rom_disk

d) Program PROMs from the disk file.

e) Make a new device descriptor for the ROM disk, with the 
"port address" set to the address at which the PROMs are 
accessed. This can be done by using the moded utility on a 
copy of the RAM disk device descriptor file, changing the 
module name and port address.

Because I/O sub-systems are dynamically initialized and terminated under 
OS-9, a volatile memory disk must be explicitly initialized (I$Attach system 
call) to remain in existence with no paths open to it:

$ load r0_256k
$ iniz /rO

This is typically done in the 'startup' file. The RAM disk can be terminated 
(I$Detach system call) using the deiniz utility. Note that both attaching a 
device and changing directory to it increment the device use count. So to get 
rid of a RAM disk (return its memory to the free pool) it must be "detached" 
(deiniz utility) as many times as it was explicitly "attached" (iniz utility) 
plus as many times as chx and chd were used on it. Once the RAM disk has 
been terminated all the files in the RAM disk are lost. A non-volatile 
memory disk (battery-backed RAM, or ROM) does not need initializing or 
terminating.

The ram device driver provided by Microware performs no data integrity 
checks, other than a check of the validation word in sector zero. A 
battery-backed RAM disk can become corrupted due to power failure or 
program errors, particularly in systems that do not have the SSM for
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inter-task memory protection. If the integrity of files in a battery-backed 
RAM disk is important, it may be advisable to protect against undetected 
corruption by modifying the ram device driver to write a CRC (Cyclical 
Redundancy Check) with each sector, and to check the CRC when a sector is 
read. The OS-9 module CRC system call (F$CRC) can be used for this 
purpose, in which case an additional three bytes must be allocated for each 
"sector" of memory. To make this modification requires the source code to 
the ram device driver.

8.9 DATA MODULES
All multi-tasking operating systems must address the need for memory areas 
accessible by multiple processes, for use as data pools, buffers, and common 
information structures. OS-9 offers an elegant solution by making use of the 
OS-9 memory module concept. Normally a module must be present at 
startup (in ROM, for example), or be loaded using the F$Load system call. 
However, in addition a module can be created in dynamically allocated 
memory, using the F$DatMod system call. Prior to OS-9 version 2.3 only a 
module of type "data" could be created in this way. The chapter on the OS-9 
System Calls gives a detailed description of the F$DatMod system call, 
including how to create data modules in coloured memory, and how to create 
modules of other types.

The F$DatMod system call, available through the _mkdata_module() and 
make module!) C library functions, should be considered as a way of 
allocating a named memory area of any desired size. The module has a 
header, body, and CRC just like other modules, but it is the body only that is 
of interest to the programmer - this is the "allocated memory". The kernel 
creates the module such that the body is equal in size to the size requested by 
the F$DatMod system call (so the module in total is slightly larger), and 
clears the body to zeros, which can be a useful initialization aid. The CRC is 
initially correct, although it becomes invalid once data has been written to 
the module. This is of no importance unless the module is to be saved, and 
later loaded from disk or blown into ROM.

Because a data module is created from dynamically allocated system memory, 
the program cannot know the address of the memory at compile time - the 
address of the data module is returned by the F$DatMod system call. 
Therefore the memory must be addressed register indirect (assembly 
language), or by a pointer (C language). The program will usually maintain 
two pointers, one giving the address of the module header (for later 
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unlinking), and the other pointing to the body of the module - the "allocated 
common memory".

The creation of a data module for shared memory is more elegant and more 
public than the alternative of one process passing the address of a memory 
area to other processes. In addition, the data module approach is compatible 
with the System Security Module inter-task memory protection. If the SSM 
is being used on a system, a process cannot access memory that it has not 
itself allocated, even if it has the address. However, if it creates or links to a 
module the kernel adds the module's address space to the process's memory 
map, so the process can access it. Thus the use of a data module for shared 
memory is upwardly compatible with systems using the SSM, while passing 
the address of a memory area is not. Note that the permissions (public, 
group, and user) specified when the module was created control the access to 
the memory. If a process has only read or execute permission for the module, 
the memory management unit will be configured to give a bus error if the 
process tries to write to the module (provided the MMU has the capability, as 
is the case for the 68851, 68030, and 68040).

The most convenient way to create and use a data module is to define a 
single C structure containing all the elements required to be in the shared 
memory. The size value used to create the data module is then simply the 
size of the structure (sizeof keyword), and the pointer to the module body is 
a pointer to that type of structure.

While the F$DatMod system call returns both the address of the module 
header and the address of the module body, the C library function 
_mkdata_module() only returns the address of the module header. From 
this can be calculated the address of the module body, because the kernel 
initializes the "execution entry offset" of the extended module header with 
the offset to the module body. The example below shows such a calculation.

Once a process has created the data module, other processes can link to it, 
just as they would link to any other module in memory, using the F$Link 
system call, or the modlinkO C library function. This returns the address of 
the module header. As with the _mkdata_module() function, the address of 
the module body is calculated by adding the "execution entry offset" in the 
module header to the address of the module header.

Data modules can also be created and linked to by operating system 
components, such as device drivers. This can be used to provide shared 
memory between device drivers, or between a device driver and a process. If 
the data module is to be used by a device driver, it is a useful technique to 
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build the data module name from the device "port address". For example, if 
the port address is $FC480000, the data module name could be 
'dmFC480000'. This allows other incarnations of the device driver to be 
active at the same time, controlling other devices of the same type, without a 
conflict of names between the data modules.

When a process (or operating system component) has finished with the data 
module - for example, when the process or device driver is about to 
terminate - it should unlink from the data module, using the F$UnLink 
system call or the munlinkO C library function. The creation of the data 
module sets the module's link count to one, and each link to the module 
increments the link count. Each unlink decrements the link count, just as 
with any memory module. Once the link count reaches zero the module is 
removed from the module directory and its memory is returned to the free 
pool. Again, the use of data modules should simply be seen as named memory 
allocation, with the memory being returned to the free pool when no longer 
needed.

The kernel does not keep track of the modules a process or operating system 
component has created or linked to. Therefore if a process does not unlink 
from a data module - perhaps because it has been killed by the kernel or 
another process - the data module will remain in existence. This is not fatal, 
as the data module can be identified by name, and unlinked by the user or 
another process. Alternatively, if the application is restarted it can detect 
that the previous incarnation was abnormally terminated, because it is 
returned a "module already exists" error (EKWNMOD) when it tries to 
create the module. The new incarnation can either exit with an error, or link 
to the already existing module, and clear the module body to zeros (as if it 
had just been created).

The same mechanism can be used for communication between loosely bound 
processes. As each process starts up, it attempts to create the data module. If 
it succeeds, it knows that it is the first process to use the module, and so must 
initialize the module. If it fails (with the error E KWNMOD), it knows that 
it is not the first process - it then links to the module, and does not initialize 
it. If this approach is used, then some synchronization mechanism - such as 
an event - is needed to prevent subsequent processes using the module body 
before it has been completely initialized by the first process. This precaution 
is not needed if the initialization is performed in system state, for example by 
a device driver, because rescheduling will not take place while execution is in 
system state.
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A data module is only shared memory - it does not provide any inter-process 
synchronization. Therefore, unless access is always in system state, or the use 
of fields within the data module has been carefully designed to need no 
interlocks between processes, some independent synchronization mechanism 
such as an event or signals must be used. This is because a process's time 
slice can end at any time, including while it is reading or writing to a data 
module (or any shared memory), and another process that uses the data 
module could become the current process.

It is possible to alter the behaviour of the kernel's process scheduler (see the 
chapter on "Multi-tasking"), but in general such an approach is less flexible, 
more difficult to debug, and more likely to cause problems for future 
adaptations of the software under development. Certain 68000 instructions 
are indivisible, and these can be used in many applications to avoid the need 
for a synchronization mechanism. Reading and writing of words and long 
words, and the "bit change" instructions, are useful examples. The C compiler 
generates these instructions, as can be seen by inspecting the assembly 
language output of the compiler, or the necessary small functions can be 
written in assembly language (see the chapter on Microware C and Assembly 
Language).

The following example shows the creation of a data module, whose body is to 
contain a declared structure type. If the module already exists, the program 
links to it instead. The address of the body of the module is calculated, and a 
character string is copied to one of the structure elements. Note that the 
macro mkattrevs that builds the attribute and revision word for creating 
the module is defined in the file 'module.h'. As usual, for clarity all error 
handling has been omitted, except for the check that the reason for being 
unable to create the module was because a module of that name already 
existed:

#1nclude <module.h> /* module header structure declarations */
/* The module will have read and write permission for all processes: */ 
//define PERMS (MP_OWNER_READ+MP_OWNER_WRITE+MP_GROUP_READ

+MP_GROUP_WRITE+MP_WORLD_READ+MP_WORLD_WRITE)
#def1ne ERROR -1

/* These functions return a pointer to a module header: */ 
mod_exec *modl1nk(),_mkdata_module();

/* This 1s the structure the data module will contain: */ 
typedef struct (

1nt msg_len:
char msg_str[100]:

) data_struct:
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char *mod_nanie="data_niodule". /* the name of the data module */
♦message; /* the message string to write */

ma1n(argc,argv)
1nt argc;
char **argv;
{

mod_exec *mod_ptr; /* pointer to module header */
data_struct *data_ptr; /* pointer to module body */

/* Try to create the data module: */
1f ((mod_ptr=_mkdata_module(mod_name.s1zeof(data_struct), 

mkattrevs(MA_REENT,l), PERMS) )=(mod_exec *)ERROR) ( 
/* Couldn't create the data module: */
1f (errnol=E_KWNMOD)

exlt(errno): /* fatal error */
/* Module already exists - link to it: */ 
mod_ptr=modl1nk(mod_name.0);

)
/* Calculate the address of the module body using the

address of the module header, and the offset in the header: */ 
data_ptr=(data_struct *)((char *)mod_ptr +mod_ptr->_mexec);
/* Write the message to the structure 1n the data module: */ 
strcpy(data_ptr->msg_str,message);
/* And the length of the message: */ 
data_ptr->msg_len=-strlen(message);

}

8.10 SHARED EXTERNAL MEMORY
OS-9 only "knows" about memory areas specified to it in the memory search 
lists of the boot ROM and the init module. Therefore memory can be 
"hidden" from the operating system. Examples of memory which might 
usefully be excluded from the memory lists are:

a) Battery-backed memory for configuration parameters.

b) I/O memory, such as graphics display RAM.

c) Inter-processor communications mailboxes and buffers.

d) Fixed inter-process communication data space (not 
recommended).

When considering whether to "hide" an area of memory from the operating 
system you should first consider declaring it as coloured memory. If the 
memory area is given a priority of zero in the memory list, memory from that 
area can only be allocated by specific reference to its colour. This approach is 
more portable than creating a program that "knows" the absolute memory 
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address of a special memory area. However, the operating system will use the 
first few bytes of the memory to link it into the free memory lists, and this 
may be undesirable for certain types of special memory.

If the System Security Module is not used, there is nothing preventing a 
process directly addressing such memory (or any memory location). A process 
may also directly access the registers of an interface chip, such as a parallel 
port. This is perfectly acceptable provided you are sure it will not conflict 
with accesses from other processes, or a device driver. However, if the SSM is 
used these areas of "hidden" memory are not normally mapped in to a 
process's permitted memory map, and the process will generate a bus error if 
it attempts to read or write in that memory area. Such memory can normally 
only be accessed in system state, when the memory management unit's 
protections are suspended.

However, because this could be a serious restriction in certain applications, 
OS-9 allows a process to gain permission to access any memory area by using 
the F$Permit system call. This system call adds a memory area to the 
memory map of a process. The process can request any combination of read, 
write, and execute permissions (although the 68851 and the MMUs in the 
68030 and 68040 only support read and read-and-write, so a request for 
execute permission gives read permission). The complementary system call 
F$Protect requests that the memory area be removed from the process's 
memory map.

Note that these system calls are actually installed by the SSM during its 
initialization, and are not part of the kernel. At coldstart the kernel installs 
handlers for these system calls that simply test the first byte of the memory 
area:

tst.b (a2)
so this is the action taken if the SSM is not in use10. These system calls are 
only permitted from a process created by a super user (a member of group 
zero), or that has changed its user number to zero (using the F$SUser 
system call) - only permitted if the program module was created by a super 
user. These system calls are described in detail in the chapter on the OS-9 
System Calls.

10 Under OS-9 version 2.2 the kernel does not install default handlers for these calls, so if the 
SSM is not in use these calls return an “unknown service request" error (ESUnkSvc).

Be aware that the normal data and program caching hardware facilities of 
the processor (if any) will still be operational during accesses to memory 
revealed by F$Permit. Therefore accesses to I/O device registers are likely to 
cause problems if the processor has a data cache, as the processor may return 
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a value from the cache rather than re-reading the desired register, unless 
external address decoding circuitry inhibits caching during accesses to the 
I/O device registers. (The kernel disables the processor data cache during I/O 
system calls, so device driver accesses to I/O device registers are not cached).

There is no C library function to make the F$Permit system call, so the 
assembly language for a C-callable function is given below. The example 
shows a C program calling the assembly language function, followed by the 
function itself. The F$Protect system call (which is rarely needed) takes the 
same parameters, except that the dl register is not used.

map_1n() 
{

/* Map in 64k of memory at address JFC840000, requesting 
read and write permission: */

1 f (f_perm11(0x10000. S_I READ |S_WRITE, OxfC840000)=ERROR) 
ex1t(_errmsg(errno,"Can't access memory\n)):

}

#asm
* f_perm1t(s1ze,perms,address)
* The F$Perm1t system call requires:
* dO.l = size of memory area to map 1n
* dl.w = access permissions
* aZ. 1 = starit address of memory area to map in
f_permit:

move.l a2,-(a7) save register
movea.l 8(a7),a2 get start address parameter
os9 F$Perm1t map 1n memory
bcc.s f_perm1tl0 ..success
moveq #0,d0
move.w dl.dO copy error code
move.l d0,errno(a6) save it
moveq #-l,d0 show error
bra. s f_permit20

f_perm1tl0
moveq #0,d0 show no error

f_permitZO
movea. 1 
rts

(a7)+,aZ retrieve register

#endasm

8.11 ALARMS
Alarms are not strictly an inter-process communication mechanism, as they 
do not provide a means by which one process can communicate with another. 
Rather, they allow the clock tick interrupt handler function to communicate 
with a process.
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A process installs an alarm using the F$Alarm system call. This requests 
that the kernel send a signal of a specified code to the process at a future 
time. Two types of alarm are available - single shot, and cyclic (periodic). 
The single shot alarm sends a signal after a specified number of ticks have 
elapsed (relative alarm), or at a specified date and time (absolute alarm), and 
then cancels (deletes) itself. The cyclic alarm sends signals repeatedly at the 
specified interval of ticks, until the process explicitly deletes the alarm, or 
the process dies. The kernel automatically deletes all outstanding alarms for 
a process when the process dies.

A single shot alarm allows a process to implement a timeout, for example 
when waiting for data to arrive on a serial port. A cyclic alarm is a useful 
means of getting a process to execute a sequence of instructions at strict 
intervals, independent of the time taken to execute the instructions 
(provided it does not exceed the alarm interval!). A cyclic alarm can also be 
used as a watchdog timer - the signal intercept routine of the process checks 
whether the main program body has set a flag in time, before the alarm 
signal was received.

A process can have any number of alarms installed at any one time. The 
F$Alarm system call returns a unique ID (actually the address of the alarm 
"thread execution block”), which is used to identify the alarm when deleting 
it. An alarm can be deleted using the F$Alarm system call, preventing any 
subsequent signals being sent by the alarm. Passing zero as the alarm ID 
when deleting alarms causes all alarms belonging to the process to be deleted 
(the kernel makes this call when a process dies). Only the creator of an alarm 
(same process ID) or a super user process (group zero) can delete an alarm.

The information about an alarm is held in a "thread execution block" 
allocated by the kernel when the alarm is created (see the section on the 
Process Descriptor in the chapter on the OS-9 Internal Structure). The 
thread block is linked into a linked list of thread blocks, rooted in the System 
Globals. The linked list is ordered by execution time - the first entry in the 
list will be executed first, and so on. Alarms are inserted in the list when they 
are created, and cyclic alarms are re-inserted in the list after every 
execution, ready for the next execution.

For an absolute alarm - set by date and time - the alarm date and time are 
stored in Julian format. Absolute alarms can therefore only be set to a 
resolution of one second. For a relative or cyclic alarm the alarm time given 
to the call is added to the current value of the D_Ticks field of the System 
Globals (ticks since system startup) before being stored in the thread block. 
Relative and cyclic alarms can therefore be specified to a resolution of one 
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tick. Note that if bit 31 of the time given to the call is set this indicates that 
the time value is given in 256ths of a second. The kernel clears bit 31, and 
converts the time to the nearest tick. This avoids the need for the 
programmer to know the tick period of the system. The minimum time that 
can be specified is one tick. This will cause a relative alarm to execute at the 
next tick, and a cyclic alarm to execute every tick.

Alarms are not directly acted on by the kernel's tick interrupt handler. 
Instead, the tick handler wakes up the System Process (see the chapter on 
Multi-tasking), and the System Process sends the alarm signals. The System 
Process has the highest possible process priority (65535), so it is sure to 
execute as soon as any currently executing interrupt service routines have 
finished, and any currently executing system call has finished or gone to 
sleep - that is, before any other program can continue execution in user 
state. This means that from a programming point of view the effect is exactly 
the same as the signals being sent from the tick interrupt handler, but 
because the tick interrupt handler does not have to handle the alarms it 
executes more quickly, and so allows other interrupts to be serviced with less 
latency.

The System Process, once activated, and having checked the timed sleep 
queue, checks every alarm in the queue for relative and cyclic alarms, 
comparing the alarm time in the thread block with the current value of 
D Ticks. If the alarm time has been reached (or passed), the System Process 
executes the thread block function (sends the alarm signal), and removes the 
thread block from the queue. If the alarm is cyclic, the System Process adds 
the cyclic period to the alarm time in the thread block, and re-inserts it in 
the queue. Otherwise it de-allocates the thread block. Once all entries in the 
queue have been checked (stopping at the first entry that does not need 
execution, as the queue is in time order), the kernel calculates how many 
ticks must elapse before the first alarm still in the queue (if any) is to be 
executed. If this is less than the current value of D Elapse (set by the check 
of the sleep queue), the System Process updates D Elapse with the lesser 
value, so that it will wake up when necessary to execute the alarm.

Having checked the relative and cyclic queue, the System Process then 
checks the absolute queue, comparing each alarm date and time with the 
current date and time in the D_Julian and D_Second fields of the System 
Globals. If the alarm date and time have been reached (or exceeded) the 
System Process executes the thread block function, and deletes the thread 
block. Once all entries have been checked, the System Process checks the 
D Elapse field, just as for the relative and cyclic alarms.
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If the system date and time are changed (by the F$STime system call), the 
kernel forces the System Process to be active, causing a check of the alarm 
queues. Therefore any absolute alarms that have expired as a result of the 
change are immediately executed. Note, however, that as the F$STime 
system call does not update the D_Ticks field of the System Globals (number 
of ticks since system startup), relative alarms are not affected by the date and 
time change.

The F$Alarm system call is used for all the alarm operations, with a 
function code specifying which operation is required. Separate C library 
functions are provided for each of the alarm operations. The table below 
shows the function codes with their symbolic names from the file 
'DEFS/funcs.a', the corresponding C library functions, and a brief description 
of each operation.

in Julian format (date as days since 2nd January, 
year -4712, and time as seconds since midnight).

Code Name C function Description
0 AJDelete alm_delete Delete an alarm, given the alarm ID (or zero to 

delete all alarms of a process).
1 A$Set alm_set Create a relative single shot alarm.
2 AJCycle alm_cycle Create a cyclic alarm.
3 AJAtDate alm_atdate Create an absolute alarm, given a date and time 

in Gregorian format (YYYYMMDD,
OOHHMMSS).

4 ASAtJul alm_atjul Create an absolute alarm, given a date and time

Alarms should be used with care. As described above, a process should if 
possible have only one sequence of instructions to execute, and so under 
normal circumstances it should not need the asynchronous change of flow of 
control provided by signals. A program that makes regular use of signals 
(rather than for exceptional conditions) is likely to be overly complex. 
Consider whether instead the program could be broken down into two or 
more separate processes using events, or using signals only as a 
synchronization mechanism.

8.11.1 System State Alarms

The System Process does not know implicitly what action to take when an 
alarm must be executed. Instead, it uses the register stack frame image that 
was built in the thread block by the F$Alarm system call. If the system call 
is made from user state, the F$Alarm handler routine builds an appropriate 
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register stack image for an F$Send (send a signal) system call - dO.w is the 
process ID (of the calling process), dl.w is the requested signal code, and the 
program counter is set to the address of the F$Send system call. This causes 
the F$Send system call to be made as the execution of the alarm. However, 
any subroutine can be called by the System Process.

When the System Process has determined that an alarm must be executed, it 
switches its user group and user number to those of the process that created 
the alarm (in the P$User field of the System Process process descriptor). It 
then sets the exception abort stack and return program counter (P$ExcpSP 
and P$ExcpPC) for a clean return to itself (because the execution is in 
system state, so without this provision an exception in the execution would 
cause a system crash). Finally, it takes the registers from the stack frame of 
the thread block (dO to d7 and aO to a3 - a4 is the address of the System 
Process process descriptor, a5 is the address of the stack frame in the thread 
block, and a6 is the address of the System Globals), and calls the subroutine 
whose address is in the program counter field of the stack frame (R$pc).

When the subroutine returns, if the carry flag is set the System Process puts 
the error code in the dl.w register into the dl.w register of the stack frame 
(clearing the high word of dl.l). Lastly, it puts the returned Condition Codes 
register (ccr) in the stack frame (R$ccr), thus setting the carry flag in the 
stack frame if there was an error. This is a convenience for future uses of 
thread blocks, as alarm thread blocks are never returned to the caller. 
However, because the register stack frame is modified in this way, and also 
might be modified by the execution subroutine, when executing a cyclic 
alarm the System Process actually makes a copy of the stack frame in the 
thread block (on its stack) and uses that for the execution (a5 points to it), so 
any changes to the stack frame used for the execution do not affect 
subsequent executions of the cyclic alarm.

The result is that alarms work differently when installed from system state, 
such as from a device driver or kernel customization module. Instead of 
sending a signal, the alarm execution uses a register stack frame given to the 
F$Alarm system call, which is copied to the thread block. The caller can 
therefore specify all the data and address registers used when the alarm is 
executed (except a4, a5, and a6, which are pre-defined - see above), and the 
address of the subroutine to call (in the program counter field of the stack 
frame - R$pc). This allows operating system components to "hook" 
subroutines into the clock tick interrupt service routine, providing watchdog, 
timeout, and polling functions independent of any calling process. Note that 
as with user state alarms the alarm is executed by the System Process, not 
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directly by the tick interrupt service routine, and interrupts are enabled 
when the alarm is executed.

For example, a single shot alarm can be used to turn off a floppy disk drive 
motor when the drive has not been used for a certain time, and a periodic 
alarm can be used to poll for input from a device that cannot generate 
interrupts. Because the caller specifies the processor register values to use 
when the installed routine is called, the routine can access the static storage 
of the caller (such as the device static storage used by a device driver), using 
the same symbolic names. In many ways an alarm routine installed from 
system state is very similar to an interrupt service routine - it is called 
asynchronously to the main body of (for example) the device driver, and can 
share static storage with the main body. However, because it is called from a 
process (the System Process), the alarm routine will not be called during the 
execution of a system call - it cannot break into the execution of the main 
body of a device driver, for example. The execution of the alarm routine will 
be deferred until the system call finishes or goes to sleep.

A system state alarm routine is called with the processor in supervisor state, 
and so has all the responsibilities of any system state routine. Although the 
System Process changes the group and user in its process descriptor to that 
of the creator of the alarm, the routine is still called as a subroutine of the 
System Process - the current process is the System Process. Therefore the 
routine must not sleep in any way (sleep, wait for event, make an I/O request 
that might sleep, and so on), because this would suspend the maintenance of 
the timed sleep queue and other alarms. However, other system calls that are 
forbidden in interrupt service routines can be used, because the System 
Process is scheduled in as the current process in the normal way, so there is 
no possibility of breaking into a system call being made by another process.

Similarly, the normal system state hardware exception recovery mechanism 
applies. If a bus error or other hardware exception occurs, control is 
transferred to the address given in the P$ExcpPC field of the process 
descriptor, with the stack pointer given in the P$ExcpSP field (see the 
chapter on Exception Handling). By default the System Process sets these 
before executing each alarm for a clean return to itself, ignoring any 
hardware exceptions.

When an alarm is created, using the F$Alarm system call, the thread block 
that is allocated is linked in to the linked list of thread blocks allocated by 
the calling process. When the process dies, the kernel deletes all outstanding 
alarms for the process. This applies whether the call is made from user or 
system state. However, this is normally undesirable in system state, as an 
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alarm installed by a device driver in response to an initialization caused by a 
path being opened by a process must not be deleted simply because that 
process has died - other processes may now have paths open on the device. 
This difficulty may be avoided by temporarily substituting the address of the 
System Process's process descriptor for the current process before making 
the F$Alarm system call. The thread block will then be allocated to the 
System Process. Also, the group and user for the alarm will be that of the 
System Process - 0.0. The following code fragment shows an example of this 
technique:

* Alarm time ancI date are 1n d3 and d4, function code 1s 1n dl
move.l D_Proc(a6).-(a7) save current process descriptor
move.l D_Sys P rc,D_Proc(a6) make System Process current process
lea AlarmHandler(pc),aO point at alarm subroutine
suba.w #R$S1ze,a7 make room on stack for stack frame
move.l aO.R$pc(a7) set routine address
movem.l d0-d7/a0-a3.(a7) set other registers for call
movea.l a7,a0 copy stack frame address for call
os9 F$Alarm make system call
move.w sr.dZ save carry flag
adda.w #R$S1ze,a7 ditch stack frame
move.l (a7)+,D_Proc(a6) restore current process
move.w d2,sr restore carry (error flag)

* Alarm ID is 1ri dO.l, unless carry 1s set.

Because the System Process never dies, the kernel will not automatically 
delete alarms that have been installed in this way. This is similar to other 
resources installed in system state. For example, a device driver that uses an 
alarm must make sure that the alarm is deleted as part of its termination 
routine, otherwise the System Process could attempt to call an alarm routine 
that is no longer in memory.

The C library functions mentioned above assume that the calls are being 
made from user state, and are not suitable for use from system state. 
Therefore if you are writing system state code (such as a device driver) in C, 
you will need to write your own C-callable alarm functions in assembly 
language. The writing of C-callable functions in assembly language is 
described in the chapter on Microware C and Assembly Language.
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