
THE OS-9 I/O SYSTEM

CHAPTER 7

THE OS-9 I/O SYSTEM

The OS-9 input/output system has several unique features, making
Vv it very flexible and easy to customize. The I/O (input/output) system

T is tree structured. All I/O system calls go to the kernel, which routes
the call to the appropriate file manager module handling that class

of device. To perform physical device operations, the file manager calls the
device driver module for the specific interface device.

There can be any number of file managers (or none), and for each file
manager there can be any number of device drivers. Each file manager
handles a particular class of devices. For example, the Random Block File
manager (RBF) handles randomly accessible block structured devices such as
hard and floppy disks, while the Sequential Character File manager (SCF)
handles character stream devices such as video terminals and printers.

In order to maintain the broad applicability of a file manager, it deals only
with logical data operations - it has no understanding of how the data is
physically transferred. The physical transfer of data is performed - on the
request of the file manager - by the device driver that has been specifically
written for a particular I/O interface device, such as a floppy disk controller
chip, a serial communications chip, or an intelligent network controller
board.

Each device is described by a special data module known as a device
descriptor. The device is known by the name of the device descriptor module,
preceded by a '/'. For example, the device descriptor module term describes
the device '/term'. The device descriptor contains the names of the file
manager and device driver modules to use to manage the device, essential
information about the device - such as the address of the interface - and a
set of options fields for controlling the device behaviour.

97

THE OS-9 I/O SYSTEM

This approach has two important benefits. It allows the same device driver to
be used for any number of I/O interfaces that use the same interface chip, by
having a separate device descriptor for each interface, giving a different port
address and interrupt vector. Also, multiple device descriptors with different
names can be created for the same interface, but with different options
settings, or even with a different file manager or device driver name.

For example, two device descriptors could refer to the same serial port, one
with options appropriate for its use in communicating with a terminal,
another for communicating with a printer. The two device descriptors are
"aliases" for the same device. Or, the two device descriptors could specify
different device drivers, one for asynchronous communication, another for
HDLC synchronous communication. (In the latter example, the device
descriptors are not considered simply aliases for the same device, because
different device drivers are specified).

One of the special features of the OS-9 I/O system is the dynamic
initialization and termination of I/O sub-systems. Under OS-9, a device does
not need to be explicitly initialized by the user. The kernel will automatically
initialize the device (if it has not already been initialized) when a path is
opened on the device. This feature is described in more detail below.

7.1 I/O SUB SYSTEMS AND DEVICES
An "I/O sub-system" comprises a file manager module, a device driver
module, a device descriptor module, and a device static storage memory area.
The I/O sub-system is held together by the device table entry, which
contains the addresses of each of these items. (This simple view is made
slightly more complex by the possibility of "alias" device descriptors).

A "device" is a physical data store or data conduit. It is difficult to separate
the I/O interface on the computer (such as a serial communications chip)
from the external data store (such as a disk drive). Some devices have no data
store - they exist only as data conduits. Examples are interface chips for
serial communications and networking, ADC (analogue to digital converter)
chips, and graphics display circuits. Whether or not the device has a data
store, it must have an interface on the computer - a microprocessor cannot
directly handle any external objects.

The interface is an electronic circuit that appears to the microprocessor as a
set of memory locations, and provides the means for the microprocessor to
handle the device data, status, and control functions. The interface may be a

98

THE OS-9 I/O SYSTEM

The OS-9 concept of a device includes abstract devices that have no interface
or data store - they exist only as a function of software. Examples are pipes
(sequential memory buffers) and RAM disks (a simulation of a disk drive
using computer memory). Programs and the kernel make no distinction in
their use of real and abstract devices.

I/O sub-systems are dynamically created and dismantled. When a path is
opened on a device, the kernel implicitly executes an I$Attach system call.
This system call (which is part of the kernel) links to the device descriptor
module, and then searches the device table for an entry with the same device
descriptor address. If a matching entry is not found, the I/O sub-system does
not exist, and must be created. The kernel:

1) Gets the file manager and device driver names from the device
descriptor.

99

THE OS-9 I/O SYSTEM

2) Links to the file manager and device driver modules.

3) Builds an image of the desired device table entry.

4) Sets the device use count in the image to 1.

5) Allocates the device static storage.

6) Calls the initialization routine of the driver.

7) If the driver returned no error, copies the device table entry
image to the device table. Otherwise, "detaches" the device (see
below).

If a matching entry is found, however, 1$ At tach per forms only steps 1 and 2,
and increments the device use count.

Note that the I$Attach system call can also be made explicitly - this is what
the iniz utility does. This ensures that the device is initialized (if the I/O
sub-system did not already exist), and prevents the device from being
terminated even if there are no paths open on it. The most common example
of the use of this feature is with RAM disks. The RAM disk device driver uses
an area of memory to simulate a disk drive, which can be used to store
temporary files or copies of commonly required files, to speed up access to
these files. Normally this memory is dynamically allocated from system
memory when the I/O sub-system is initialized, and de-allocated when the
I/O sub-system is terminated. The iniz utility is used to ensure that the
RAM disk remains in existence even if no paths are open to files on the RAM
disk:

$ iniz /rO

If this were not done, the following sequence of operations would give no
error, but an unexpected result:

$ copy /hO/startup /rO/startup
$ dir /rO

The copy would open a path to the RAM disk, causing it to be initialized,
copy the file to the RAM disk, and then close the path, causing it to be
terminated. The dir causes the RAM disk to be initialized again, and reads
the root directory of the freshly initialized RAM disk - the file has
apparently disappeared!

The complement to the I$Attach system call is the I$Detach system call.
The kernel implicitly makes this system call when a path is closed with no
remaining duplications (so the path descriptor is about to be de-allocated).
An I$Detach system call on an I/O sub-system with a device table use count

100

THE OS-9 I/O SYSTEM

of one causes the kernel to dismantle the I/O sub-system and delete the
device table entry. The kernel:

1) Calls the device driver termination routine (ignoring any
returned error).

2) De-allocates the device static storage.

3) Unlinks from the device descriptor, file manager and device
driver.

4) Deletes the device table entry.

If the use count was not at one, I$Detach unlinks from the device
descriptor, file manager, and device driver, and decrements the device use
count.

Note that the I$Detach system call can also be made explicitly - this is what
the deiniz utility does. This allows the user to terminate an I/O sub-system
that is being held in existence even though there are no paths open on it
because a previous explicit I$Attach call was made on the device (such as by
the iniz utility).

A more detailed description of the operation of I$Attach and I$Detach is
given below, in the section on The I/O System Calls.

For the system calls I$MakDir (make directory), I$ChgDir (change
directory), and I$Delete (delete file) the kernel opens a path, calls the
appropriate file manager function, and then closes the path. This is
important for two reasons:

a) All the file manager functions, including those above, are
called with an open path (an initialized path descriptor
exists).

b) The device is guaranteed to be initialized when a call is
made to any file manager function.

The kernel also increments the device use count before closing the path in
the I$ChgDir system call. This is to prevent the I/O sub-system from being
terminated if there are no paths currently open on the device on which the
default directory resides. Therefore a user wishing to delete an I/O
sub-system (that has no paths open on it) must call deiniz as many times as
iniz, chd, and chx together were called on that device. This is commonly
experienced with RAM disks. The devs utility can be used to show the

101

THE OS-9 I/O SYSTEM

current use count on all devices. (The display from devs refers to the use
count as "links").

Because the I$Attach and I$Detach system calls can be made explicitly,
there may be no path open on the device when the call is made. Therefore
the kernel calls the initialization and termination functions of the device
driver directly, without calling the file manager. This is to maintain the
philosophy that the file manager functions are always called with an open
path. The initialization and termination functions are the only device driver
functions called by the kernel. All other device driver functions are called
only by the file manager.

7.2 FILE MANAGERS AND DEVICE DRIVERS
Microware have separated the code components of an I/O sub-system into a
file manager and a device driver. This is a convenience - the split in
functionality can be at any level. For example, the pipe device driver does
nothing. The operation of pipes cannot vary from system to system, because
they are simply memory buffers, so the pipe file manager can contain all the
functional code without fear that this will restrict the portability of the I/O
sub-system to other computers. Because many device drivers may be written
to work with one file manager, the functionality of the device driver and the
interface between the file manager and the device driver is a convention
defined by the writer of the file manager.

Normally, however, the file manager contains all the code for the logical
manipulation of the data for devices of a particular type. For example, RBF
contains all the functionality for handling a hierarchical filing system. The
device driver has only the task of carrying out physical operations on the
device (at the request of the file manager).

The separation into two modules has these benefits:

a) Multiple device drivers (for different devices of a similar type)
can use the same file manager, saving on development effort
(and memory). Existing file managers can be used wherever
possible, independent of the actual hardware on a particular
system.

b) The device driver writer does not have to understand how the
filing system works.

102

THE OS-9 VO SYSTEM

c) The device driver writer has the minimum task to perform -
he need only provide low-level physical control of the device.

d) The device driver writer has a limited (and therefore more
easily learned and understood) programming environment.

These advantages simplify and speed up the porting of OS-9 onto new
hardware. It should not be thought, however, that the existence of the file
manager level makes it impossible for the device driver writer to include
special functionality in the device driver. The "get status" and "set status"
system calls (described below) can be used to send requests directly to the
device driver - the file manager passes on the call without interpretation -
so the device driver can implement any number of special features
appropriate to the particular device or application.

7.3 DEVICE DESCRIPTORS
Each I/O sub-system is described by a small data module known as a device
descriptor. Multiple device descriptors (of different names) may exist to
describe the same device, specifying different optional properties or just a
different name. Paths to more than one such "alias" can be open
simultaneously.

A device is known by the name of its device descriptor module preceded by
the character. The "alias" feature of the I/O system means that the same
device may be known by more than one name.

A device descriptor contains a standard section and an options section. The
- standard section follows after the header parity word of the module header.

It is defined in the file 'DEFS/module.a'. In the following description, the
offsets are relative to the start of the module header:

Offset Name

$030 MSPort

S1 ze Description
1 The device “port address" - the memory address of the

registers of the interface chip used to control the device.
The kernel only uses this field to check whether a device
descriptor is only an alias of another device descriptor
already in the device table, and to initialize the
V_PORT field of the device static storage. The use of
this field in actually accessing the chip is a function of
the device driver only. This field is intended to allow a
device driver module to be used on any number of
interfaces that use the same type of chip.

103

THE OS-9 I/O SYSTEM

Offset Name

$034 MSVector

$035 M$IRQLvl

$036 M$Prior

S1 ze Description
b The interrupt vector to be used by the device. This field

is not used by the kernel - it is for the use of the device
driver when installing an interrupt handler. As with
M$Port, this field is intended to allow a device driver
module to be used on any number of interfaces that use
the same type of chip. The value set in this field must
conform to the requirements of the interface chip. If the
chip supports a programmed vector number, this field
can be set to a unique number for each chip, so the
interrupt handler of the device driver does not need to
poll to see which chip interrupted. Note that some chips
generate more than one vector (relative to a base value),
depending on the cause of the interrupt. In this case,
this field should be set with the base value to be
programmed into the chip. The chip, or its supporting
circuitry, may not support normal vectoring - the
hardware is configured to request autovectoring from
the processor. In this case, this field must be set to the
appropriate autovector - the interrupt level generated
by the chip, plus 24.

b The interrupt level of the device. This is usually a
hardwired feature of the circuit incorporating the
interface chip. Sometimes it is a link option on the
board, and some chips or supporting circuitry support a
programmable interrupt level. If the interrupt level is
hardwired, this field must be set to that value (1 to 7). If
it is a link option, this field must match the link setting.
If it is a programmable setting or link option, use the
philosophy described in the chapter on Device Drivers
when deciding on the interrupt level to use.

b The interrupt software polling priority. If the device has
been assigned a unique vector number, this field should
be zero. The kernel will give an error if a device driver
tries to install an interrupt handler on a vector if an
entry already exists for that vector and the specified
polling priority of the new or existing handler is zero.
Some devices or device drivers absolutely require this
restriction, because for those devices the vector number
returned by the device on interrupt is the only
information that distinguishes which device is
generating the interrupt. If there is more than one
device installed on the same vector the kernel creates a
linked list of interrupt table entries in polling priority
order (low priority values first). This is the order in
which the kernel will call the interrupt handlers on that
vector until one of them indicates that it has handled
the interrupt.

104

THE OS-9 I/O SYSTEM

Offset Name SI ze Description
$037 M$Mode b The device capabilities. This is a byte of bit flags,

enabling use of the device as follows:
Bit
0 read
1 write
2 execute
5 supports "initial file size"
6 supports "non-sharable" files
7 supports directories

When a path is opened on a device, the kernel checks
that the access mode requested in the open call is
compatible with the capabilities of the device.

$038 M$FMgr w Offset to a string giving the name of the file manager to
use.

$03A M$PDev w Offset to a string giving the name of the device driver to
use.

$03C M$DevCon w Offset to an optional table of extra information about
the device. If this field is zero, no such table exists. The
structure and use of such a table is defined by the device
driver writer.

$046 M$Opt w Size of the options section.
$048 The options section of the device descriptor.

The options section contains information about the configuration of the
device. The structure of the options section is defined by the file manager
writer, although specific device drivers may define additional locations to
configure special devices (in general, this is not recommended). The options
section of the device descriptor (up to a maximum of 128 bytes) is copied to
the options section of the path descriptor whenever a path descriptor is
created by the kernel.

7.4 PATHS, PATHLISTS, AND FILES
A "path" is a logical conduit for data, commands, and status between a
program and a device, or a data structure within a device. A program would
not normally access an I/O interface directly (although it is perfectly possible
to do so), because this would bypass all the resource management, file
handling, and interrupt handling benefits of the operating system. Instead,
the program opens a path to the device (or data structure within the device)
by using a system call. The operating system returns a path number, which
the program uses to identify the path in subsequent operations of read, write,

105

THE OS-9 I/O SYSTEM

status, and control. When the program has finished with the device it makes
a system call to close the path, closing the logical conduit.

The operating system manages the path through the path descriptor memory
structure, which it allocates when a path is opened, and de-allocates when
the path is closed. The kernel automatically closes any paths that a process
has open when the process dies.

A "file" is a data structure within a device that has a data store. The concept
of a file allows one device to be used to store multiple sets of data, and (on
most devices) for the data to be modified, extended, or truncated. File
management is a function of the particular file manager used with the
device, and so will vary between devices. In general, file managers are
written to give as similar a programmer's view of files as possible, to make
programs more portable.

The best known use of files is on a disk drive. A disk drive is a "random
access device" - the computer can read data blocks from all over the disk in
any order without a great delay. This makes it feasible to create, modify,
extend, truncate, and delete files by allocating space to each file as necessary.
To keep track of the files the operating system must maintain one or more
"directories" on the disk. A directory is a file that contains a list of file names
and positions of the files on the disk. Because a directory is a file, the files in
a directory may themselves be directories, creating a so-called tree structure
or hierarchy of directories. There must be at least one directory on the disk.
This directory is known as the root directory (because it is the root of the
tree).

A "pathlist" is a character string identifying a device and/or a file, used in the
system call to open a path. A pathlist may have multiple name elements,
separated by separator characters. In its simplest form a pathlist is just a
device name:

/dO

or a file name:
fred

If a device supports files, the device name is taken to refer to the root
directory of the device. For example:

$ dir /dO

will display the root directory of the device 7d0', while:
$ list /dO/fred

106

THE OS-9 I/O SYSTEM

will list the file 'fred' in the root directory of the device 7d0'.

If the pathlist does not start with a device name, it is taken to be relative to
the current data directory of the process, or - if the path is opened with the
execute mode set - relative to the current execution directory of the process.
Because some file managers support directories - which may be hierarchical,
or only a root directory - there must be some way of expressing the route
through the directory tree to the file required. This is done by stringing the
names of the directory files together to make the pathlist, in the order in
which the route must be followed.

Under OS-9, the convention is that the name elements are separated by the
7 character, (but bear in mind that this is a function of the file manager, not
the kernel). For example, if the device 7d0' has in its root directory a
directory called 'GEORGE', and that directory has within it a directory called
'JIM', and within the directory 'JIM' is a file 'henry', then the following
command line would be used to list the file 'henry':

$ list /dO/GEORGE/JIM/henry
Notice that by convention directories are given names in upper case. This is
for convenience - it makes it obvious which files are directories when a
directory is listed. The kernel uses the system call "parse name" (F$PrsNam)
to check device names (and all module names). This call ignores letter case.
File managers (including RBF) usually also use this system call for the other
elements of the path list, so file names are not sensitive to letter case (unlike
UNIX). For example, the command line shown above would produce the
same result if entered as:

$ list /dO/george/jim/henry
Again, bear in mind that the kernel only parses the device name, stopping at
the first character that is not a legal character within a name. The
F$PrsNam system call - used to check module and device names, and the
names of files being created - places the following restrictions on names:

a) Legal characters are numbers, letters, the underscore
character ' ', the period character and the dollar
character '$'.

b) The name must contain at least one number, letter, or
underscore.

The F$CmpNam system call used to compare the name of a file being
opened ignores letter case, and implements wild carding of names. The
character matches any number (including zero) of characters, up to the next

107

THE OS-9 I/O SYSTEM

occurrence in the target string of the character following the '*' in the match
string, or to the end of the target string if the is the last character in the
match string. The '?' character matches the next character in the target
string whatever it is.

Match string

f*d
fr*
f?r
f*d?d

Matches
fred, fold, folded, fd
fred, fr, fritter
fur, far, for
folded, fielded

7.5 PERMISSIONS, ATTRIBUTES, AND MODES
Devices and files have associated flags to restrict access. These flags are
known as "permissions" or "attributes" (there is no difference). When a
program opens a path to a device or file, it specifies the "mode" in which it
wishes to access the path. The "mode" is a set of flags indicating the type of
operations the program wishes to subsequently perform on the path. The
operating system checks that the requested mode matches the available
permissions of the device or file, and returns an error (such as E$FNA - file
not accessible) if they do not. The permissions and mode flags are bit flags
within a byte or word field. The permissions field may have separate
sub-fields for user, group, and public permissions.

When a path is opened the kernel checks the requested mode against the
device permissions as part of the I$Attach system call. The I$Attach system
call checks that all of the mode flags that are set are matched by the
equivalent permissions flags in the device descriptor module (except the
"sharable" flag, which I$Attach ignores). It is the responsibility of the file
manager to check the requested mode against the individual file permissions.
RBF checks that the requested mode is valid for each directory/file in a
pathlist. Note that even if a pathlist does not start with a device name, but is
relative to the current execution or data directory, the kernel still performs
an I$Attach system call for the device, and so checks the requested mode
against the device permissions. If the mode specifies execute access, the
kernel checks the device of the current execution directory, otherwise it
checks the device of the current data directory.

The basic permission (and mode) flags are read, write, and execute. For
example, when used in a permissions field, the "read" flag indicates that read
operations are permitted on the device or file. When used in a mode field, the

108

THE OS-9 VO SYSTEM

"read" flag indicates that the program wishes to be able to make system calls
to read data from the path. The mode flags - used in a system call to open a
path (including creating a new file) - are:

Bit Meaning when set

0 Read

1 Write

2 Execute

3 Not used

4 Not used

5 Initial file size is specified (when creating a file)

6 Non-sharable

7 Directory file

Bit 5 - used in a call to create a file - is not used by the kernel, and indicates
to the file manager that the program is explicitly giving the size of the file to
create. Otherwise the initial size depends on the file manager. For example,
RBF will create a file of zero length, while the pipe file manager pipeman
will allocate a pipe of about 90 bytes.

Bit 6 indicates that the calling program wants to be the only process using
the file or device. The I$Attach system call ignores this flag, but if this flag
is set the kernel returns an error when trying to open a path if another path
is already open on the device. Notice that the kernel does not perform the
reverse check - if this flag is not set, the kernel will allow a path to be
opened on a device even if the device has already got another path open on it
that was opened with this flag set. Also, the kernel skips this check
altogether if the mode or the device permissions include bit 7 - the directory
flag.

The permissions flags for a device are held in the M$Mode field of the device
descriptor module header. Note that these are the permissions available for
opening paths on the devices, as opposed to the module access permissions
M$Accs in the module header, which give the permissions available for
linking to a module. The device permissions flags have exactly the same
format as the mode flags. If a flag - such as the "initial size" flag - is set, this
permits the corresponding mode to be used. If the "non-sharable" bit is set,
the kernel will not allow a path to be opened on the device if another path is
already open on the device, so only one path can be open on the device at any
one time.

109

THE OS-9 I/O SYSTEM

The permissions flags for files depend on the file manager. RBF keeps a byte
field of permissions with each file:

Bit Meaning when set

0 Owner or group read

1 Owner or group write

2 Owner or group execute

3 Public read

4 Public write

5 Public execute

6 Non-sharable

7 Directory

The use of single flags for owner and group permissions is a historical legacy
of OS-9/6809, which does not have the concept of user groups.

7.6 THE I/O SYSTEM CALLS
The I/O system calls are a special subset of the OS-9 system calls. They
provide the facilities for data transfer, and control and status of devices and
files. While the other system calls all have assembly language symbolic names
beginning with the characters F$, the I/O system call names start with the
characters 1$. The kernel manages I/O calls by using the device static
storage, device table, and path descriptor memory structures.

OS-9 has a unified, device independent I/O system. Therefore it has a
general purpose set of I/O system calls. It is the job of the file manager to
produce an effect in response to an I/O call that is as consistent as possible
with the OS-9 I/O system philosophy. Because particular devices usually
have some special properties that could not reasonably be covered by a
generalized set of system calls, two of the calls - I$GetStt and I$SetStt -
are "wild card" calls whose effects vary from file manager to file manager,
and device to device. Even with these calls, the device driver writer should
try to maintain the same effect for all devices of the same type.

During I/O system calls, when the kernel is making a call to the file manager
or device driver it disables the processor data cache(s), unless the
compatibility flags in the System Globals indicate that the data caches should
not be disabled during I/O accesses (bit 7 of D Compat2), or they indicate

no

THE OS-9 I/O SYSTEM

that all the data caches are coherent (D SnoopD is non-zero). When the
call to the file manager or device driver is complete, the kernel flushes and
enables the data cache(s) it had previously disabled.

In OS-9 version 2.2, after each call to a file manager the kernel would always
force a process reschedule by setting the "timed out" flag in the state field of
the caller's process descriptor, thus terminating the process's time slice. From
OS-9 version 2.3 onwards this is only done if there was another process "I/O
queued" on the current process - that is, another process is requesting the
resource this process has just finished with. The aim is to maximize I/O
usage, as I/O is often the bottleneck in system performance.

For calls made from user state on an already open path (I$Seek, I$Read,
I$ReadLn, I$Write, I$WritLn, I$GetStt, I$SetStt, I$Close, and
I$SGetSt), the kernel converts the caller's local path number to a system
path number through the path number conversion table in the caller's
process descriptor. The exception is the call I$SGetSt, as this call is
explicitly made with a system path number. Calls made in user state that
open a new path return a local path number, and store the system path
number in the caller's process descriptor path number conversion table.

Calls made in system state on an already open path expect a system path
number, and perform no path number conversion. Similarly, calls that open a
new path return a system path number, and do not update the path number
conversion table.

The following descriptions of the I/O system calls concentrate on the
behaviour of the kernel. Further detail of the behaviour of the RBF and
SCF file managers is given in the section on File Managers.

7.6.1 I$Attach: Add Device to Device Table

The I$Attach system call takes a device name string and a set of mode flags,
and ensures that the device is installed in the device table and initialized.

Note that this call is made implicitly by the kernel whenever a path is
opened. If the pathlist does not start with a device name, the kernel uses the
device table entry address stored in the caller's process descriptor to get the
address of the device descriptor on which the current directory is located,
and performs an I$Attach on that device (the current execution directory if
the mode flags include the execute flag, otherwise the current data
directory).

Ill

THE OS-9 I/O SYSTEM

ISAttach performs the following sequence of operations:

a) Skip a leading '/' character if present.

b) Link to the device descriptor module of the given name.

c) Link to the device driver and file manager modules whose
names are in the device descriptor.

d) Search the device table for an entry for the same device
descriptor, or an entry with a different device descriptor
specifying the same device driver and port address (an alias). If
an entry for the same device descriptor address is found:

• Check the device static storage address in the existing
device table entry. If it is zero, the I/O sub-system is being
dismantled - the device driver's terminate routine is
currently being executed (it must have gone to sleep).
• In that case, I/O queue on the process that is terminating
the I/O sub-system - its process ID is in the "use count"
field of the device table entry. (This prevents a call being
made on a device that is in the processing of being
terminated.) On wakeup, check again (the device table entry
will have been deleted, unless the process was woken for
another reason).

e) If an existing entry for the device descriptor was not found,
find an empty entry and build an image of the new entry (in
private memory).

• If the new entry was found to be an alias for an existing
entry, copy the address of the device static storage from the
existing entry to the image of the new entry.
• Otherwise, allocate and initialize the device static storage,
and call the initialization routine of the device driver.
• In either case, then copy the image of the device table
entry to the new entry, and set the use count in the new
entry to one.

D If an existing entry was found, increment the use count (unless
it is at the limiting value for a word field, 65535).

g) Check that all the mode flags set in the supplied mode are
matched by flags set in the device permissions in the device
descriptor. If not, return an error E$BMode (but do not
detach the device).

Note that the device descriptor, device driver, and file manager modules are
simply linked to. The kernel does not automatically load these modules if

112

THE OS-9 I/O SYSTEM

they are not present in the module directory. Therefore the modules must
either be in ROM or the boot file, or they must be explicitly loaded before the
device is used. The 'startup' file is a convenient place to load additional I/O
modules that are regularly required on a particular system.

7.6.2 I$Detach: Remove Device from Device Table

The I$Detach system call is the complement to I$Attach. It is used to
remove a device from the device table when the device is no longer in use.
The kernel makes this call implicitly whenever it terminates a path - that is,
whenever the use count of a path descriptor is decremented to zero, because
all duplications of the path have been closed.

I$Detach performs the following operations:

a) Decrement the use count of the device table entry.

b) If the use count is now zero:
• Get the address of the device static storage from the device
table entry, and clear the device static storage field in the
device table entry as an indication that the device is being
terminated.
• Look through the device table to see if there is another
entry using the same device static storage address. If not,
copy the caller's process ID to the "use count" entry of the
device table entry, call the termination routine of the device
driver, and de-allocate the device static storage.
• In either case, save the device descriptor address from the
device table entry, and clear the device descriptor address
and use count fields of the device table entry to zeros, to
indicate it is free.

c) Unlink from the file manager, device driver, and device
descriptor modules.

7.6.3 I$Dup: Duplicate a Path

The I$Dup system call takes the path number of an already open path, and
returns a new local path number that accesses the same path. The path use
count fields (PD_COUNT and PD_CNT) in the path descriptor are
incremented. (The word field PD_COUNT is incremented, and the low byte
copied to the byte field PD CNT. If the result in PD_CNT is zero, it is set to
one). In common with the calls that open a new path (I$Open and
I$Create), I$Dup uses the first free entry in the process's path number

113

THE OS-9 I/O SYSTEM

conversion table. That is, the lowest available local path number is used. This
call is used primarily to redirect the standard input, standard output, and
standard error paths (paths 0, 1, and 2 respectively) when forking a child.

By duplicating a path, the process can save a copy of its own standard path,
close the standard path, open the desired new path - which will take the
path number of the closed standard path, being the first free local path
number - and fork the child process. The child process inherits the
redirected path. The parent can now close the newly opened standard path,
duplicate the saved path again - which will be duplicated to the standard
path just closed, being the first available - and close the first duplication,
shell uses this technique for implementing its redirection features.

The kernel uses path duplication when asked to fork a process. It duplicates
the requested number of paths (usually three) from the parent to the new
child. This is how a child process "inherits" the standard paths of its parent.

Path duplication is a simple function. Owner permissions do not need to be
checked, as the process clearly must already have the necessary permissions
to have opened the path. Apart from finding a new local path number for the
calling process (or the child, in the case of a fork), the kernel simply
increments the use count fields of the path descriptor used to manage the
path.

7.6.4 I$Create: Create a File

The I$Create system call creates a new file and opens a path to it. File
managers that do not support a filing system - such as the Sequential
Character File manager (SCF) used for character stream devices like
terminals and printers - normally treat this just like the I$Open system call.
I$Create takes a pathlist giving the name of the new file, a set of
permissions flags that determines the permissions of the new file, and a set
of mode flags that determines the mode of the path opened to the file.

A directory cannot be created by this call (the "directory" flag of the
permissions must not be set). The I$MakDir system call must be used to
create a directory.

The kernel treats this call in exactly the same way as an I$Open call. The
distinction - creating a new file - is made only by the file manager. RBF
gives an error if a file of the same name already exists (rather than
overwriting the existing file).

114

THE OS-9 I/O SYSTEM

7.6.5 I$Open: Open a Path

The I$Open system call takes a pathlist giving the name of the file or device
to open, and a set of mode flags indicating the desired modes of access of the
path.

The kernel creates and clears a path descriptor, and allocates a system path
number. It initializes the PD_COUNT and PD CNT fields of the path
descriptor to one, and saves the requested access modes in the field
PD MOD. The PD_USER field is set to the group and user numbers of the
calling process. The kernel then makes an I$Attach system call for the
device on which the path is being opened, and saves the device table entry
address in the PD_DEV field of the path descriptor. If the pathlist does not
start with a device name, the kernel makes the I$Attach call for the device
whose device table entry address is stored in the "current data directory"
field of the process descriptor, unless the "execute" flag is set in the requested
access modes, in which case the "current execution directory" entiy is used.

If either the requested mode or the device permissions have the
non-sharable flag set, and the requested mode does not have the directory
flag set, the kernel checks whether a path is already open on the device
(using the linked list of path descriptors whose root pointer is in the device
static storage). If so, the kernel "detaches" the device, de-allocates the path
descriptor, and returns an error E$Share (non-sharable device is in use).

Otherwise, the kernel links the new path descriptor at the head of the linked
list of path descriptors open on this device (rooted in the device static storage
field V_Paths), and copies the options section of the device descriptor to the
options section of the path descriptor. This completes the initialization of the
path descriptor.

The kernel then calls the file manager. The kernel first checks whether
another process is already making a file manager call on the path - the
PD CPR (process ID of process using the path) field in the path descriptor is
not zero. If so, it "I/O queues" (F$IOQu system call) the calling process onto
the process that is currently calling the file manager on this path. This puts
the calling process to sleep. When it is woken from the I/O queue, the kernel
tries again, unless the process has received a signal (other than the wakeup
signal that was used to wake it from the I/O queue), in which case the kernel
returns the signal code as an error code. (Of course, in the case of an open or
create call the path cannot be in use by another process, as it has just been
opened, but this same sequence is used for all calls by the kernel to a file
manager).

115

THE OS-9 I/O SYSTEM

The process ID of the calling process is then copied to the PD CPR field of
the path descriptor, indicating that there is currently a call by this process on
this path into the file manager, and the kernel calls the appropriate file
manager function (in this case the "open" function). On return from the file
manager, the kernel "I/O unqueues" the path. It checks whether there is a
process I/O queued on the current process (the calling process). If so, it clears
the link to that process in the process descriptor of the current process
(P$IOQN field), and wakes up that process by sending it a "wakeup" signal
(signal code S$Wake). The kernel then sets the "timed out" flag in the
process state flags of the process descriptor of the current process, causing
reschedule when the current process next returns to user state.

As mentioned above, if the file manager supports directories, opening a path
with a pathlist consisting only of the name of the device opens a path to the
root directory of the device:

path_num = open("/dO", S_IDIR|S_IREAD);

RBF implements a special feature that allows a program to open a path to
the whole of a disk, as if it were a file. This feature is requested by appending
the '©' character to the device name:

path_num = open(”/d0®", S_IREAD):

A process whose group number is zero can read and write any part of the
disk in this way. Other processes cannot write to the disk, and can only read
the first few sectors (the disk identification sector and the allocation bitmap
sectors). Note that a process has a group number of zero if it was forked by a
member of the super user group (group zero), or if it has changed its group
number to zero using the F$SUser system call (only permitted if the
program module was created by a super user).

7.6.6 I$MakDir: Create a New Directory

The parameters to the I$MakDir system call are the pathlist of the directory
to create, the permissions of the new directory file, and the access mode for
opening the path while the file is being created. Like the I$Create system
call, I$MakDir is a request to the file manager to create a new file, but in
this case although the kernel opens a path for the benefit of the file manager,
it closes the path before returning to the calling program. The file
permissions passed by the calling program are not used by the kernel
(although they may be used by the file manager). The "write" and "execute"
flags are added to the "read" and "execute" flags of the access modes passed
by the calling program, to form the access modes used to open the path.

116

THE OS-9 I/O SYSTEM

7.6.7 I$ChgDir: Change Current Directory

The I$ChgDir system call is used to change the current data and/or
execution directories. Like the I$MakDir system call, this call temporarily
opens a path, calls the appropriate file manager functions, and then closes
the path. The parameters are the pathlist of the directory, and the access
modes for opening the directory. The kernel adds the "directory" flag to the
access modes before opening the path.

If the file manager function is successful, the kernel saves the address of the
device table entry for the device on which the directory was opened, in the
P$DIO field of the caller's process descriptor. If the access modes have the
"read" or "write" flag set, the device table entry address is saved to the
"current data directory" portion of this field (the first long word of the first
half). If the access modes have the "execute" flag set, the device table entry
address is saved to the "current execution directory" portion of this field (the
first long word of the second half). Flags of both types may be set, in which
case both entries are updated.

Before closing the path, the kernel increments the use count of the device
table entry for the device on which the directory exists. This prevents the I/O
sub-system being deleted by the I$Detach call used in closing the path, in
case there are no other paths open on the device.

7.6.8 I$Delete; Delete a File

The I$Delete system call requests the deletion of a file on a device that
supports a filing system. This is another system call that temporarily opens a
path, calls the file manager, and closes the path. The parameters are the
pathlist of the directory, and the access modes for opening the path. The file
manager will also normally insist that the caller has write permission on the
file to be deleted. Also, if the file is a directory, a file manager will insist that
the directory is empty. In fact, RBF does not permit the deletion of a
directory. The file attributes must first be changed to make the file an
ordinary file, and RBF will only permit this if the directory is empty.

7.6.9 I$Seek: Set the File Pointer

The I$Seek system call is made on an open path, and is intended to
reposition the current file pointer of a file (that is, the position from which
the next read or write will transfer data). The kernel passes this call directly
to the file manager.

117

THE OS-9 I/O SYSTEM

7.6.10 I$Read: Read Data

The I$Read system call is intended to read data from a path without editing
or interpretation by the file manager. It is made on an open path, with
parameters giving the address of the memory buffer to read to, and the
(maximum) number of bytes to read. If the call is made from user state, the
kernel checks (using the F$ChkMem system call) before calling the file
manager that the process has permission to write the requested number of
bytes to the indicated memory buffer, and (provided no error is returned
from the file manager) adds the number of bytes read to the P$RBytes field
of the process descriptor. (If the field thereby exceeds the maximum value
that can be stored in a long word - $FFFFFFFF - the kernel sets it to
$FFFFFFFF).

7.6.11 I$Write: Write Data

The I$Write system call is intended to write data to a path without editing
or interpretation by the file manager. It is made on an open path, with
parameters giving the address of the memory buffer to read from, and the
(maximum) number of bytes to write. If the call is made from user state, the
kernel checks (using the F$ChkMem system call) before calling the file
manager that the process has permission to read the requested number of
bytes from the indicated memoiy buffer, and (provided no error is returned
from the file manager) adds the number of bytes written to the P$WBytes
field of the process descriptor. (If the field thereby exceeds the maximum
value that can be stored in a long word - $FFFFFFFF - the kernel sets it to
SFFFFFFFF).

7.6.12 I$ReadLn: Read Line

The kernel treats the I$ReadLn system call exactly the same as an I$Read
call. However, the intention is that the file manager will end the input when
a CR (Carriage Return) control character is read (character code 13), if this
occurs before the requested byte count is reached. The file manager may also
perform additional data manipulation. For example, SCF implements a
simple set of line editing functions.

7.6.13 I$WritLn: Write Line

The kernel treats the I$WritLn system call exactly the same as an I$Write
call. However, the intention is that the file manager will end the output
when a CR (Carriage Return) control character is written (character code

118

THE OS-9 I/O SYSTEM

13), if this occurs before the requested byte count is reached. The file
manager may also perform additional data manipulation. For example, SCF
implements line feed after carriage return, end of line and page pause, and
tab expansion.

7.6.14 I$GetStt: Get Status

The I$GetStt "get status" system call is a "wild card" call. In combination
with the I$SetStt system call, this call is intended to provide access to all of
the features of the I/O system that cannot be accessed by the other calls.
I$GetStt is intended to get status about the path, file, or device, while
I$SetStt is intended to exercise control or change the state of the path, file,
or device. An I$GetStt or I$SetStt call is made on an already open path. In
addition to the path number, the caller passes a function code indicating
which "get status" or "set status" function is to be executed, together with
parameters appropriate to that function.

The kernel implements two "get status" functions itself. After executing the
relevant function the kernel also passes the call to the file manager's "get
status" routine. Similarly, the file manager will normally pass a "get status"
call on to the device driver, even if the file manager has recognized the
function code and executed the appropriate function. The kernel or file
manager ignores (no error is returned to the caller) an "unknown service
request" error (E$UnkSvc) returned by the file manager or device driver
respectively in response to a call that it has itself recognized. Any other
error is returned to the caller.

If the kernel does not recognize the function code, it passes the call directly
to the file manager. Similarly, if the file manager does not recognize the
function code, it will normally pass the call directly to the device driver. This
allows the file manager writer to invent new function codes for functions
specific to the class of devices supported by the file manager, and the device
driver writer to invent codes for functions specific to a particular device (or
mode of operation of the device).

Microware have defined many function codes, covering all the special
functions of the file managers and device drivers they have written. The
function codes (which all start with the characters SS_) are defined in the
file 'DEFS/funcs.a'.

119

THE OS-9 I/O SYSTEM

The two "get status" function codes recognized by the kernel are:

Code Name Description
$0000 SS_Opt Copy the options section of the path descriptor to the caller's

buffer.
SOOOE SS_DevNm Copy the device name (without a leading '/") from the device

descriptor to the caller's buffer.

In both functions the kernel checks (using the F$ChkMem system call) that
the indicated buffer is permitted to the calling process.

7.6.15 I$SetStt: Set Status

The I$SetStt "set status" system call is a "wild card" call, complementing the
I$GetStt system call. It is intended to allow commands and parameters to be
sent to a device and its device driver. The kernel does not implement any "set
status" calls itself. It passes the calls directly to the file manager.

7.6.16 I$Close: Close a Path

The I$Close system call closes an open path. The kernel decrements the
PD_COUNT use count field of the path descriptor, and copies the low byte
to the PD_CNT field (if that byte is zero, the kernel copies the high byte of
PD_COUNT to PD_CNT, to ensure that PD_CNT only goes to zero if
PD_COUNT is zero). Provided the PD_CPR field is zero, indicating there is
not currently a call on the path into the file manager, the kernel calls the
"close" function of the file manager. This implies that the file manager is not
always called for the closure of every duplication of a path, but it will at least
be called for the closure of the last duplication (because there cannot then be
any other call currently executing on the path).

If the PD_COUNT use count field is now zero, the kernel calls the
I$Detach function and de-allocates the path descriptor.

7.6.17 I$SGetSt: Get Status on System Path

The I$GetStt system call, if called from user state, takes a local path
number, so a program cannot get the status of paths other than its own. This
is a good security measure, but restricts the facilities of programs used to
report the status of other processes, such as the procs utility.

The I$SGetSt system call therefore provides a means for a program to
request information about the paths of other processes, by supplying a

120

THE OS-9 I/O SYSTEM

system path number rather than a local path number. The calling process
must know the system path number for the path it wants information about.
It can find this out by requesting a copy of the target process's process
descriptor (using the F$GPrDsc system call), and inspecting the process's
path number conversion table.

To maintain system security, this system call is restricted to those "get
status" functions that the kernel implements itself (get path options, and get
device name). The call is only permitted if the calling process is a member of
the super user group (group zero), or is the same group and user as the
requested path. Furthermore, unlike the I$GetStt system call, I$SGetSt
does not normally pass the call on to the file manager.

The kernel implements a special option, using an options field in the
extended header of the kernel module. If bit 7 of this field (the byte at offset
$84 from the start of the module header) is set, then the kernel does pass the
calls it recognizes on to the file manager after carrying out its own function
(and returns no error if the file manager returns the error E$UnkSvc).

7.7 PATH DESCRIPTOR OPTIONS
The second half of the path descriptor is the "options section". The kernel
copies the device descriptor options table to the path descriptor options
section. The structure of the options in the device descriptor and path
descriptor are therefore the same. File managers also commonly write
additional information about the path or file at the end of the options
section, so that the program can inspect this information using the SS_Opt
function of the I$GetStt "get status" system call.

The structure of the options section is defined by the file manager writer.
Only the first field is common to all options sections. This is a byte field
PD_DTP, giving the "device type". This is a code number indicating the
nature of the device, and the structure of the options section. Its purpose is
to allow programs to determine whether they are dealing with an
appropriate device, and to determine the structure of the options section. For
example, the tmode utility checks whether the path uses either the SCF or
the GFM file manager (type 0 or 11 respectively), and gives an error if not.
Microware has defined the following device type codes. The symbolic name
also indicates which file manager the code is intended for).

121

THE OS-9 I/O SYSTEM

Code Name Description
0 DT_SCF Sequential character device (terminal or printer).
1 DT_RBF Random block device (disk drive).
2 DT_Pipe Pipes.
3 DT.SBF Sequential block device (tape drive).
4 DT_NFM Microware protocol network device.
5 DT_CDFM Compact disc drive (CD-I).
6 DTJCM User interface communications device (CD-I).
7 DT_SOCK Logical socket communications device (ISP).
8 DT_PTTY Pseudo-keyboard device (ISP).
9 DT_INET Internet protocol networking device (ISP).
10 DT_NRF Non-volatile memory store (CD-I).
11 DT_GFM Graphics display device (CD-I).

A program can alter the fields in the options section (at the discretion of the
file manager) by using the SS_Opt function of the I$SetStt "set status"
system call. In this way a program can dynamically modify the handling of a
device. For example, a screen editor will use this mechanism to disable
echoing of input characters. The tmode utility uses this capability to alter
the options on the standard input, output, or error path.

Some options section parameters are used by the file manager, and so the
result of changing them is defined in the file manager documentation. Others
are used by the device driver, so the effect of changing them may vary from
system to system. For example, some serial port device drivers will
re-initialize the device if a change is made to the character format or baud
rate values in the options section, while others will not. (The recent device
drivers from Microware support this feature, but early ones did not).

As mentioned above, the structure of the remainder of the options section
depends on the file manager. The options structures for the RBF, SCF and
SBF file managers are described below. The offsets shown are relative to the
beginning of the path descriptor, and so start at 128. If the symbolic names
are used to access the options section of a device descriptor, an adjustment
must be applied, because the options section of a device descriptor starts 72
bytes from the start of the module header. The adjustment can conveniently
be symbolically expressed as:

M$DTyp-PD_OPT

122

THE OS-9 I/O SYSTEM

For example, to access the baud rate code field of an SCF device descriptor,
assuming that the al register contains the address of the device descriptor
module header:

move.b PD_BAU-PD_OPT+M$DTyp(al),d0

7.7.1 RBF Options Section

Offset Name SI ze Description
$080 PD_DTP b Device type (1 for RBF).
$081 PD_DRV b Logical drive number (base 0) - used by RBF as an index

into the drive tables in the device static storage.
$082 PD_STP b Drive step rate - code depends on the device driver.
$083 PD-TYP b Disk type:

Bit Description (when set)
0 before OS-9 version 2.4 - 8" disk (else 5.25")

1:4 Disk size:
1 8"
2 5.25"
3 3.5"

5 Track 0 is double density
6 Removable (hard disks only)
7 Hard disk (else floppy disk)

$084 P0JNS b Disk density:
Bit Description (when set)
0 Double density (MFM)
1 Double track density (96tpi)
2 Quad track density
3 Octal track density

$086 PD_CYL w Number of cylinders available for data (different from
PD TotCyls if partitioning is used, or some cylinders are
reserved for defect handling).

$088 PD_SID b Number of surfaces (sides) available for data (tracks per
cylinder).

$089 PD_VFY b Verify after write is disabled if this field is not zero.
$08A PD_SCT w Sectors per track (other than track zero).
$08C PD_TOS w Sectors on track zero (surface 0 of cylinder 0).
$08E PD_SAS w Segment allocation size - the minimum number of

sectors RBF will allocate when extending a file, to
minimize fragmentation.

$090 PD_ILV b Physical sector interleave factor, for formatting.
$091 PD_TFM b DMA mode to use - device driver dependent.
$092 PD_T0ffs b First cylinder to use (one for Microware's Universal

format, zero otherwise).

123

THE OS-9 I/O SYSTEM

$093 PO_SOffs b Lowest physical sector number on each track (zero or
one).

$094 PD_SS1ze w Logical block size, used by RBF. Prior to OS-9 2.4, RBF
only supported a value of 256. Now any power of 2
(starting at 256) is supported.

$096 PD_Cntl w Options control word:
Bit Description (when set)
0 Do not allow formatting
1 Disable multi-sector requests from RBF
2 Device ID will not change
3 Driver supports SS DSize Get Status call
4 Driver and device can format individual tracks

$098 PD_Trys b (sic) number of retries by driver on data error.
0 => use driver default
1 => one tiy only (no retries)

$099 PD_LUN b Physical drive number (SCSI LUN).
$09A PD_WPC w First cylinder to use write precompensation (to disable

write precompensation, set this field equal to the
number of cylinders).

$09C PD_RWR w First cylinder to use reduced write current (rarely used).
$09E PD_Park w Cylinder to park heads on (rarely used).
$0A0 PD_LSNOffs 1 Logical sector number offset for driver to add to RBF

requests - used to create partitions.
$0A4 PD_TotCyls w Total number of cylinders on disk.
$0A6 PD_CtrlrIO b Target controller ID (for SCSI).
$0A7 PD_Rate b Data transfer rate and rotational speed (for floppy

disks):
Bit Description
0:3 Rotational speed (rpm)

0 300
1 360
2 600

4:7 Data transfer rate (k bits/sec)
0 125
1 250
2 300
3 500
4 1000
5 2000
6 5000

124

THE OS-9 I/O SYSTEM

S0A8 PD_Scs10pt 1 SCSI options:
Bit Description (when set)
0 Host is permitted to assert ATN
1 Driver and interface support target mode
2 Target supports synchronous transfers
3 Check parity on receive

$0AC PD_MaxCnt 1 Maximum number of bytes driver and interface can
transfer in one request. RBF will not ask to transfer
more bytes than this. If there is no limit, set this field to
$FFFFFFFF.

The following fields are written by RBF to the path descriptor:

$0B5 PD_ATT b Attributes (permissions) of the file accessed by this path.
$0B6 PD_FO 1 Logical Sector Number (LSN) of the file descriptor

sector of this file.
SOBA PD-DFD 1 LSN of the parent directory of this file.
SOBE PD-DCP 1 Position of the directory entry for this file in the parent

directory file.
SOC2 PD_DVT 1 Copy of the device table entry address for this device.

S0C8 PD_SctS1z 1 Copy of the sector size used by RBF on this device.

SOEO PD_NAME b 32 Name of this file (not the full pathlist) as a
null-terminated ASCII string (bit 7 of the last character
is not set, unlike the name string in the directory entry).

A "get status" call with function code SS_Opt returns a copy of all 128 bytes
of the option section - this is a function of the kernel. However, a "set status"
call with the same function code only modifies the first 11 fields, up to and
including PD_SAS (this is a function of RBF).

If the device driver support the SS_DSize and SS_VarSect Get Status calls
to determine the disk and sector sizes, and the device can inform the driver
of the relevant values, the following fields can be zero: PD_CYL, PD_SID,
PD SCT, PD TOS, PD SSize, and PDTotCyls.

7.7.2 SCF Options Section

Many of the fields in the SCF descriptor options are flags controlling the line
editing behaviour of SCF. The field description for such flags indicates the
behaviour if the field is non-zero. A more detailed description of the
behaviour of SCF in response to these flags is given in the chapter on File
Managers. Several of the other fields are key codes for input editing, pause,
flow control, and signal generation. Each feature can be disabled by setting
the key code field to zero.

125

THE OS-9 I/O SYSTEM

Offset Name Size Description
$080 PD_DTP b Device type (0 for SCF).
$081 PDJJPC b Flag: force upper case on receive and transmit.
$082 PD_BSO b Flag: to erase a character, transmit [BS][SP][BS], else

transmit [BS] (where [BS] is the code in the PD BSE
field).

$083 PD_DLO b Flag: delete line (in response to PD DEL) by erasing
the characters, else start new line (appropriate to
teletypes).

$084 PD_EK0 b Flag: echo received characters back to device (normal
terminal operation).

$085 PD_ALF b Flag: add [LF] after transmitting [CR] ("automatic line
feed generation").

$086 PD_NUL b Number of [NUL] characters to send after [CR]
(normally zero - set non-zero for slow devices that do
not support flow control handshaking, such as
teletypes).

$087 PD_PAU b Flag: pause after transmitting a page of lines (number of
lines given by PD PAG) since the last pause or input.

$088 PD_PAG b Length of page in lines, including any top and bottom
margins.

$089 PD_BSP b Key code: "delete character" - usually [BS] $08,
sometimes [DEL] $7F.

$08A PD_DEL b Key code: "delete line" - usually ['X] $18. Causes all
characters on the current input line to be erased, and
the input buffer pointer to be reset.

$08B PD_EOR b Key code: "end of input line" - usually [CR] $0D.
$080 PD_EOF b Key code: "end of file" - usually [ESC] $1B.
$080 PD_RPR b Key code: "reprint current input line" - usually [*D] $04.

(Used for devices that cannot erase characters, such as
teletypes).

$08E PD_DUP b Key code: "redisplay to end of line" - usually ["A] $01.
Causes all characters from the current buffer position to
the character before the first [CR] character in the
buffer to be displayed as if typed in (allows commands to
be repeated, with some editing).

$08F PD_PSC b Key code: "pause at end of next output line" - usually
[-W] $17.

$090 PD_INT b Key code: "generate interrupt signal" (send S$Intrpt to
the last process that used the device) - usually [’C] $03.

$091 PD-QUT b Key code: "generate quit signal" (send S$Abort to the
last process that used the device) - usually [*E] $05.

126

THE OS-9 I/O SYSTEM

Offset Name Size Description

$092 PD_BSE b Character code used to erase a character (see PDBSO)
- usually [BS] $08.

$093 PD_OVF Character to send on input line buffer full - usually the
bell character [BEL] $07.

$094 PD_PAR b Character format flags (serial communications):
Bit Description when set
0 Generate/check parity bit
1 Even parity (else odd)

2:3 Bits per character = 8-field
4:5 Stop bits = field/2 + 1

$095 PD_BAU b Baud rate code:
Code Baud rate

0 50
1 75
2 110
3 134.5
4 150
5 300
6 600
7 1200
8 1800
9 2000
10 2400
11 3600
12 4800
13 7200
14 9600
15 19200
16 38400

$FF use external clock source
$096 P0_D2P w Offset to name string of device for output (echo device).

Usually the same as this device (primary device).

$098 PD_XON b Flow control "start” character - usually [*Q] $11.

$099 PDJCOFF b Flow control "stop" character - usually ['S| $13.

$09A PD_Tab b Tab character, recognized and expanded to spaces by
SCF during line output (I$WritLn) - usually [*I] $09.

$09B PD_Tabs b Tab position spacing (see PD_Tab) - usually 4.
The following fields are written by SCF to the path descriptor:

$09C PD_TBL 1 Copy of the device table entry address for this device.
$0A0 PO_Col w Column number for next character in line output (used

for tabbing).

$0A2 PD_ERR b Bit pattern for most recent input character error -
format is device driver dependent.

127

THE OS-9 I/O SYSTEM

A "get status" call with function code SS_Opt returns a copy of all 128 bytes
of the option section - this is a function of the kernel. However, a "set status"
call with the same function code only modifies the fields up to and including
PD_Tabs (this is a function of SCF).

7.7.3 SBF Options Sections

The descriptor options structure for the SBF file manager is not defined in
the file 'DEFS/io.a'. The version of OS-9 supplied at the time of writing only
includes the C language header file 'DEFS/sbf.h'. Therefore the symbolic
names shown below are those of the C structure 'sbf opt' in that file.
However, Microware has also defined the corresponding assembly language
symbols. These are listed in Appendix B.

SBF implements the concept of multiple buffers, so that tape data transfer
can continue while the controlling process fills (or empties) the next (or
previous) buffer. For systems where the hard disk and the tape drive are on
the same interface (typically SCSI), this is usually of no benefit, and the
pd_numblk field can be set to zero to conserve memory.

Bit Description (when set)
0 Host is permitted to assert ATN
1 Driver and interface support target mode
2 Target supports synchronous transfers
3 Check parity on receive

Offset Name Size Description
$080 pd_dtp b Device type (3 for SBF).
$081 pd_tdrv b Logical drive number (base 0) - used by SBF as an index

into the drive tables in the device static storage.
$083 pd_numblk b (Maximum) number of buffers to allocate. If this field is

zero, SBF buffers are not used (transfer is directly
to/from the program's buffer).

$084 pd_blks1z 1 Size of each SBF buffer.
$088 pd_pr1or w Process priority for the background process that

manages continuing transfer using the buffers.
$08A pd_f1ags w Device capability flags - the high byte is for use by the

file manager, the low byte is for use by the device driver.
$08C pd_dmamode w DMA mode to use - device driver dependent.
$08E pd_scs11d b Target controller ID (for SCSI).
$08F pd_scs11un b Physical drive number (SCSI LUN).
$090 pd_scsiopt 1 SCSI options:

128

THE OS-9 VO SYSTEM

A "get status" call with function code SS_Opt returns a copy of all 128 bytes
of the option section - this is a function of the kernel. SBF does not modify
any fields for a "set status" call with the same function, but returns no error
(unless the device driver generates an error other than E$UnkSvc).

7.8 MAKING A NEW DEVICE DESCRIPTOR
Device descriptors are special modules containing data about a particular
device. The information is in binary form. The usual way of creating device
descriptor modules is by assembling and linking an assembly language file.
Microware have provided source files to help the user create new device
descriptors. The main work is done by files in the 'IO' and 'DEFS' directories.
Which file is used depends on the file manager to be used by the device,
because that determines the structure of the options section:

File Manager File

RBF 10/rbfdesc.a

SCF IO/scfdesc.a

SBF DEFS/sbfdesc.d

These files contain default options section values, which may be overridden.
The programmer does not modify these files - they are general purpose.
Instead, the programmer creates a separate source file that "includes" the
general purpose file at assembly time. Such a source file is created for each
device, and normally has the same name as the target device descriptor (with
a '.a' extension, being an assembly language source file).

Again, Microware have provided a number of such files (in the 'IO' directory),
covering the common device names (for example, 'term.a', 'tl.a', 't2.a', 'dO.a',
'dl.a', 'hO.a', 'hOfmt.a'). As with the main descriptor files, the programmer
does not normally modify these files (although he may create new ones, using
an existing one as a template). Each of these files calls an assembly language
macro which the programmer must provide. It is in this macro that the
programmer gives the basic information about the device (port address,
interrupt vector and level, and device driver name), and overrides the default
options values as desired.

For convenience the macros for all the devices in a system are usually
contained in one file, called 'systype.d'. This file also usually contains
definitions about the system as a whole, such as the memory map of the
system, 'systype.d' may be in the 'DEFS' directory, or it may be in a separate

129

THE OS-9 I/O SYSTEM

"system" directory from which device descriptors and other operating system
components are created for a system. (The latter approach allows multiple
target systems to be supported on one development system).

The file 'IO/tl.a' is an example of a descriptor file for an SCF device '/tl':
nam Tl
ttl Tl device descriptor module
use defsfile
use ../IO/scfdesc.a
Tl
ends

This file pulls in two other assembly language source files: 'defsfile' (in the
same directory as 'systype.d', from where the assembly is performed), and
'IO/scfdesc.a', which does the main work. It also calls the macro 'Tl', which
must be defined in 'systype.d'. A file for a descriptor for the device 7t2' is
almost identical:

nam T2
ttl T2 device descriptor module
use defsfile
use ../IO/scfdesc.a
T2
ends

The file 'defsfile' does nothing except pull in two other files:
use
use

../DEFS/oskdefs.d
systype.d

Or, if 'systype.d' is in the 'DEFS' directory:
use
use

../DEFS/oskdefs.d

../DEFS/systype.d

The file 'DEFS/oskdefs.d' is supplied by Microware, and includes definitions
that cannot be used from a library (due to restrictions of the assembler and
linker), such as the module type codes used with the psect directive.

130

THE OS-9 I/O SYSTEM

The 'Tl' macro in 'systype.d' will be similar to this:
Tl macro
port set SOOFFCOOO
vector set 27 autovector level 3
IRQLev set 3
I RQPrI set 5
parity set $20 8 bits, no parity, two stop bits
baud set 14 9600 baud

SCFDesc port.vector.IRQLev,IRQPri,parity,baud,sc6850
* Default descriptor• values can be changed here:
pagpause equ OFF
DevCon equ

endm
0 needed from OS-9 Version 2.4 onwards

The macro 'SCFDesc' is defined in the file 'IO/scfdesc.a'. This macro defines
symbolic values for use by the main body of the file, from the parameters
passed to the macro. The parameters to the macro are the port address, the
interrupt vector, the interrupt level, the character format pattern (for the
field PD PAR in the path descriptor), the baud rate code (for the field
PDBAU), and the device driver name ('sc6850' in this example).

The file 'scfdesc.a' creates the options section using the 'dc.x'
pseudo-operator. For example, the end-of-file field is created by:

dc.b C$EOF

The symbolic values used in 'scfdesc.a' are defined in the library 'LIB/sys.l',
from the source file 'DEFS/io.a'. If these symbols are not defined within the
'Tl' macro the assembler will generate external references for them in the
ROF 'tl.r', which will be resolved from 'LIB/sys.l' at link time. If one or more
symbols (of the correct names!) are defined in 'Tl', then the assembler
resolves the references at assembly time, and does not generate
corresponding external references. So a statement such as:

CSEOF equ $1A

within the macro 'Tl' will override the default value ($1B) for the
end-of-file character. The file 'io.a' also defines the symbols 'OFF' and 'ON'
(as 0 and 1 respectively), for convenience. For example, the "line feed after
carriage return" feature can be disabled by the line:

autolf equ OFF

in the 'Tl' macro. Refer to the file 'DEFS/io.a' for a complete list of the
symbols used in 'scfdesc.a', and their default values.

The symbol DevCon must either be set to zero, or it must be the offset to a
table of additional configuration information following the options section. In
the source file, this is achieved by placing the table - with the label 'DevCon'

131

THE OS-9 I/O SYSTEM

- after the call to the macro 'SCFDesc'. The structure of the additional
information is defined by the device driver writer. The above 'Tl' macro
modified to have such a table might be:

Tl macro
port set tOOFFCOOO
vector set 27 autovector level 3
IRQLev set 3
IRQPrl set 5
parity set $20 8 bits, no parity, two stop
bits
baud set 14 9600 baud

SCFDesc port,vector,IRQLev.IRQPrl.parity.baud.sc6850
* Default descriptor■ values can be changed here:
pagpause equ OFF
DevCon dc.w $3456

dc.b $78.$9A
endm

To make the device descriptor module from the source files:
$ r68 ../10/tl.a -o=RELS/tl.r
$ 168 RELS/tl.r -1=../LIB/sys.l -O=OBJS/tl

If the assembly is done from the 'IO' directory itself, rather than the 'DEFS'
directory, or a separate "system" directory, the assembler command line
would be:

$ r68 tl.a -o=RELS/tl.r
If the output file is to go directly to the 'BOOTOBJS' directoiy within the
execution directory, rather than a local directory, the linker command line
would be:

$ 168 RELS/tl.r -1=../LIB/sys.l -o=BOOTOBJS/tl

The lowercase '-o' option causes the output from the linker to be relative to
the current execution directory, while the upper case '-O' option causes the
output to be relative to the current data directory.

Making RBF device descriptors using the file 'IO/rbfdesc.a' is similar, but
there are subtle differences. IO/rbfdesc.a' defines default values locally,
rather than producing external references to be resolved from a library.
Therefore to change a default value the symbolic definition must be
overridden using the set pseudo-operator. For example:

SctTrk set 9 sectors per track

These redefinitions must follow the call to the 'RBFDesc' macro defined in
IO/rbfdesc.a', in order to replace the default definitions. Also, one of the
parameters to the 'RBFDesc' macro is a conditional assembly symbol,
indicating the disk format, or the nearest to the desired format. IO/rbfdesc.a'

132

THE OS-9 I/O SYSTEM

uses this symbol with conditional assembly to define default options values
appropriate to the desired disk format. Refer to the file '10/rbfdesc.a' for a
list of the symbols used for the descriptor fields and for the conditional
assembly. For example, a macro to create the floppy disk device descriptor
'dO' might be:

DIskDO macro
port set S00FFC040
vector set 64 first normal vector
IRQLev set 2
IRQPri set 0 must be the only Interface on this vector

RBFDesc port,vector,IRQLev,IRQPrl,rbteac,dd580
* Default descriptor■ values can be changed here:
SOffs set 1
DevCon dc.b "scsi5380",0

endm

In this example the device driver to use is rbteac and the disk format
conditional assembly symbol is 'dd580'. The "first sector on the track” symbol
'SOffs' is changed from the default value of 0 to a value of 1.

This is an example of a device descriptor for the Microware SCSI Device
Driver System, which uses an additional "low-level" (or "physical") driver
(actually a subroutine module) to control the SCSI interface, while the
"high-level" (or "logical") device drivers interpret the file manager requests
and convert them to SCSI commands. This allows multiple devices, even on
different file managers, to work through the same interface. The M$DevCon
field of the device descriptor is set to the value 'DevCon', which is an offset to
the name of the low-level driver module.

A typical device descriptor source file for the device 7d0' would be '10/dO.a':
nam DO
ttl DO device descriptor module
use defsfile
use ../10/rbfdesc.a
DIskDO
ends

assembled and linked by:

$ r68 ../10/dO.a -o=RELS/d0.r
$ 168 RELS/dO.r -1=../LIB/sys.1 -O=OBJS/d0

It is customary to also produce a "default device" C/dd') device descriptor for
each RBF device, using an additional linker command line such as:

$ 168 RELS/dO.r -1=../LIB/sys.1 -O=OBJS/dd.d0 -n=dd

This will produce a file 'OBJS/dd.dO' containing a module called dd - all the
other fields will be the same as the device descriptor module dO.

133

THE OS-9 I/O SYSTEM

The file 'DEFS/sbfdesc.d' used to create SBF device descriptors is similar to
TO/rbfdesc.a', in that it uses locally defined default values that can be
overridden by the set pseudo-operator. It does not use conditional assembly
to set default groups of values, and so is rather simpler than '10/rbfdesc.a'.
Refer to the file 'DEFS/sbfdesc.d' for the symbolic names and default values.
A typical SBF descriptor macro for a SCSI tape drive (and using no SBF
buffering) would be:

HTO macro
port set S00FFC040
vector set 64 normal vector
IRQLev set 2
IRQPrl set

SBFDesc
0 must be the only Interface on this vector
port,vector.IRQLev,IRQPrl.sbteac

* Default descrlptor■ values can be changed here:
NumBlks set 0 unbuffered operation
ScsilD set 3 tape drive SCSI controller ID
DevCon dc.b

endm
"scs15380",0

using the source file '10/mtO.a':

and assembled and linked by.
$ r68 ../10/mtO.a -o=RELS/mtO.r
$ 168 RELS/mtO.r -1=../LIB/sys.1 -0=OBJS/mtO

nam
ttl
use
use
MTO
ends

MTO
MTO device descriptor module
defsflle
../DEFS/sbfdesc.d

7.9 SPECIAL FEATURES
The I/O system has many features that are unique to a particular file
manager or device driver. This section highlights a few of the more
important special features created by Microware.

7.9.1 RBF Disk Caching

Disk caching uses computer memory to temporarily store data read from
disk, or yet to be written to disk, with the aim of speeding up disk file
operations. First implemented in OS-9 version 2.4, the disk caching
capability in RBF is a simple sector-orientated caching without
write-behind. Because RBF is managing the filing system, the caching
functions are able to be somewhat "intelligent", preferentially caching sectors

134

THE OS-9 I/O SYSTEM

that are more likely to be needed again. Large block transfers are not cached.
The performance benefit of this disk caching varies according to the
application, and the allocated cache buffer size. Disk caching is by default
disabled, and is enabled using the diskcache utility.

7.9.2 SCSI Device Driver System

The Small Computer Systems Interface (SCSI) provides a means of accessing
up to 7 controllers through a single interface, with each controller handling
up to 8 drives. The drives may be of different types - disk drives, tape drives,
printers, and so on. This conflicts somewhat with the simple tree structure of
the OS-9 I/O system, as several file managers may be acting through one
interface, which must be controlled by one device driver.

The problem is resolved very elegantly using a two level device driver
approach. The device drivers known to the kernel and the file managers are
"high level" (or "logical") device drivers, each handling one type of controller.
That is, they understand the requests from the file manager, and how to
build SCSI commands for the controller they have been written for, but they
do not know how to transact these commands over the SCSI interface. To do
this they call an additional module, known as a "low level" (or "physical")
device driver (actually a module of type "subroutine"). The high level drivers
link to this module as part of their initialization routine (and unlink from it
on termination), so they can call the functions within the low level driver.

SCSI also provides for multiple commands to be transacted concurrently over
the interface (known as disconnect/reselect). To implement this feature the
low level driver needs its own static storage, in order to keep track of
multiple commands together. It does this by means of a data module which it
creates in memory when its initialization routine is called from the
initialization routine of the high level driver. If the data module already
exists (so this is not the first high level driver to be initialized), the low level
driver simply links to it. The low level driver returns the address of the data
module to the high level driver, which passes this address back to the low
level driver when calling the "transact SCSI command" routine of the low
level driver.

By dynamically building the name for the data module using the address of
the SCSI interface in ASCII hexadecimal, the low level driver allows for
multiple SCSI interfaces in the same system.

135

THE OS-9 I/O SYSTEM

7.9.3 Ethernet support

The Internet Support Package (ISP) from Microware provides the standard
'TCP/IP', 'telnet', and 'ftp' facilities commonly used over Ethernet networks.
ISP uses separate "protocol modules" rather than building the protocol
interpretation into the file manager. This allows for the easy addition of new
protocols in the future, from Microware or other sources.

7.9.4 The X Window System

The X Window System (often referred to as 'X Windows") graphical user
interface (GUI) package is also available from Microware. Developed at MIT,
X is a very sophisticated package, and is the only GUI available for a wide
range of operating systems. It is able to work across a network (such as
Ethernet), so that the display terminal can be remote from the computer.

136

	CHAPTER 7
THE OS-9 I/O SYSTEM
	7.1 I/O SUB SYSTEMS AND DEVICES
	7.2 FILE MANAGERS AND DEVICE DRIVERS
	7.3 DEVICE DESCRIPTORS
	7.4 PATHS, PATHLISTS, AND FILES
	7.5 PERMISSIONS, ATTRIBUTES, AND MODES
	7.6 THE I/O SYSTEM CALLS
	7.6.1 I$Attach: Add Device to Device Table
	7.6.2 I$Detach: Remove Device from Device Table
	7.6.3 I$Dup: Duplicate a Path
	7.6.4 I$Create: Create a File
	7.6.5 I$Open: Open a Path
	7.6.6 I$MakDir: Create a New Directory
	7.6.7 I$ChgDir: Change Current Directory
	7.6.8 I$Delete; Delete a File
	7.6.9 I$Seek: Set the File Pointer
	7.6.10 I$Read: Read Data
	7.6.11 I$Write: Write Data
	7.6.12 I$ReadLn: Read Line
	7.6.13 I$WritLn: Write Line
	7.6.14 I$GetStt: Get Status
	7.6.15 I$SetStt: Set Status
	7.6.16 I$Close: Close a Path
	7.6.17 I$SGetSt: Get Status on System Path

	7.7 PATH DESCRIPTOR OPTIONS
	7.7.1 RBF Options Section
	7.7.2 SCF Options Section
	7.7.3 SBF Options Sections

	7.8 MAKING A NEW DEVICE DESCRIPTOR
	7.9 SPECIAL FEATURES
	7.9.1 RBF Disk Caching
	7.9.2 SCSI Device Driver System
	7.9.3 Ethernet support
	7.9.4 The X Window System

