
C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

CHAPTER 6

C COMPILER, ASSEMBLER, LINKER, AND

DEBUGGER

This chapter is an overview of the Professional OS-9 program
development utilities provided with OS-9 version 2.4 and version
3.2 of the Microware C compiler.

6.1 THE DEVELOPMENT SYSTEM
The development process consists of:

a) Edit the program source file(s).

b) Compile and/or assemble to Relocatable Object File(s)
(ROFs).

c) Link ROFs to form a program module.

d) Test the program, using a debugger.

e) Repeat the cycle until the program works.

The development tools consist of utilities to facilitate and help manage this
process. The development tools provided with Professional OS-9 are:

cc C compiler executive

cpp C preprocessor

c68 C compiler (68000 and 68010)

81

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

c68020

068

r68

r68020

168

make

C compiler (68020, 68030, and 68040)

assembly language optimizer

assembler (68000 and 68010)

assembler (68020, 68030 and 68040)

linker

automatic compilation manager

debug assembly-level symbolic debugger

Also available is sysdbg, the system state debugger for debugging system
state processes, operating system components and multi-tasking
applications, and srcdbg, the C source level debugger.

The C executive cc and make are utilities to facilitate the use of the
compiler, assembler, and linker, especially in projects with multiple source
files.

6.2 THE C COMPILER
The compiler has three phases: preprocessing (cpp), compilation (c68 or
c68020), and optimization (068).

The preprocessor performs the standard C preprocessing functions - all the
lines that start with the '#' character. It produces a temporary file with
macros expanded, "include" files inserted, and conditional compilation
resolved, ready for compilation.

The compiler translates the C program into assembly language output.
(Assembly language is the machine code instruction language for the
processor, but in symbolic form). The cc executive program has an option
('-a') to halt compilation at this stage. This allows the programmer to see
exactly what the compiler has done with his program - particularly
important when trying to optimize a critical fragment of the program.

The optimizer looks through the assembly language for common instruction
sequences that can be made more efficient. It may change instructions, or
even alter the order of instructions.

These phases are not normally called directly by the user. The cc executive
performs the task of calling each of the phases with appropriate parameters
and options, and of creating and deleting all necessary temporary files, cc
also calls the assembler and linker to produce a finished program module,

82

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

normally in the execution directory, ready for testing, cc takes a command
line option (’—r’) to halt compilation after assembly, once a Relocatable Object
File (ROF) has been produced (by the assembler). This allows the user to
build programs from multiple source files by specifying the linker command
line manually, usually within a script file for the make utility.

6.3 FILE NAMING CONVENTIONS
cc and make use certain conventions for filename extensions. Each
extension is a period ('.') followed by a single character. The filename
preceding the extension is called the "root". When cc and make create file
names from a given filename, they use the root of the given filename, plus
the appropriate extension. A file with no extension in its name is taken to
contain an executable program module.

Extension File contents

,c C source file

.a assembly language source file

.r Relocatable Object File (ROF) - output of assembler

none executable module - output of linker

The following conventions are also used, although neither cc nor make
recognize them:

Extension File contents

.h C definitions source file (used with #include
preprocessor directive)

assembly language definitions source file (used with
use directive)

assembly language macro definitions source file (used
with use directive)

linker library - one or more ROFs in one file

The extension conventions '.c' and '.h' are also recognized by the umacs
screen editor (it automatically switches on its 'CMODE' mode).

83

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

6.4 CC OPTIONS

cc has several options to provide control of the compilation, assembly, and
linking phases. Some of the options control which phases will be executed,
but most of the options are passed as options to the appropriate phase
program. In the following descriptions, the Microware standard notation for
command line syntax is used.

Option Affects Explanation
-a CC Suppress assembly and linking - leave the assembly

language in a '.a' file.
-bg 168 Make the output module a "sticky" module.
-bp CC Display phase command lines in full (useful when

debugging make files).
-c c68 Copy C source code as comments to compiler output

assembly language file. Use this option with '-a' to
help interpret the output of the C compiler.

-d<str> cpp Define a symbol - equivalent to #define <str>.
Examples:
-dFRED #define FRED
-dFRED=4 #define FRED 4

-e=<n> 168 Set output module edition number (default is 1).
-f=<path> 168 Set output object file name (default is the root part

of the source file name for a single file linkage, or
'output' for a multi-file linkage). Output pathlist is
relative to the current execution directory.

-fd=<path> 168 Same as '-f, but output pathlist is relative to the
current data directory. Note that the file will not
have the execute permissions set.

-g c68, r68 and
168

Generate symbol table module files with extensions
'.dbg' and '.stb' for the symbolic debuggers. These
files will go to a directory 'STB' if one exists within
the directory to which the output module is directed,
otherwise to the same directory as the output
module.

-i CC Use calls to the cio trap handler for the common
I/O functions, rather than including the functions in
the program module (significantly reduces the size of
small programs).

-j 168 Do not produce an indirect jump table for long
function calls. This suppresses the generation by the
linker of an indirect jump table in the program's
static storage for function calls where a relative
branch offset of more than 16 bits is required. This

84

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

Option Affects

-k=[<n>][W|L] C68020
[CW|CL][F]

-l=<path> 168

Explanation
option is not normally used, as a jump table is not
created unless needed. Use it if you want to know if
a jump table is needed - the linker will report a
problem.
Specify processor-dependent compilation. This
option enables the compiler generation of extended
instruction sequences for 32 bit offsets to static
storage and functions, and of 68020/030/040
additional instructions and addressing modes (such
programs cannot run on a 68000 or 68010
processor):
n=0 for 68000/010.
n=2 for 68020/030/040 (allows the use of additional
addressing modes and instructions, including long
integer division).
W indicates that word (16 bit) constant offset
indexing be used for data references (default).
L indicates that long word (32 bit) constant offset
indexing be used for static storage references. Use
this option if the program static storage exceeds 64k
bytes. It will produce a larger and slightly slower
program. For a 68000/010 the compiler will generate
two instructions for every static storage reference.
CW indicates that word (16 bit) constant offset
indexing be used for program references and
function calls (default).
CL indicates that long word (32 bit) constant offset
indexing be used for program references and
function calls. Use this option if a program larger
than 64k bytes is being generated, and string literals
are being referenced at offsets greater than 32k, or
the indirect jump table approach is considered slow
(each long call takes two instructions through the
jump table). This option will produce a larger and
(for short calls) slightly slower program. For a
68000/010 the compiler will generate two
instructions for every function call or string literal
reference.
F indicates that in-line FPU instructions be used for
maths, rather than function calls. Such programs
can only be used with a 68881 or 68882
co-processor, or with a 68040 processor, but floating
point maths will be very much faster.
Specifies an additional library. The library will be
searched before any of the default libraries. If
multiple '-1' options are used the libraries will be
searched in the order of the '-1' options.

85

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

Option Affects Explanation
-m=<n> 168 Add to linker default stack allocation of 3k (units are

k bytes).
-n=<name> 168 Set output object module name - default is same as

output object file name.
-o CC Exclude optimization phase.

-q cc "Quiet" mode - don't display phase execution
messages.

-r cc Don't execute linker phase - leave output in '.r'
Relocatable Object File(s).

-s c68 Omit stack checking code. The compiler normally
generates a call to the subroutine stkcheck at the
beginning of each function, to check for stack
overflow. This subroutine is contained in 'cstart.r',
and is suitable for programs, but not (for example)
for device drivers.

-t=<dir> CC Specify directory for temporary files - default is
current data directory. This could be a RAM disk
C/rO'), to speed up compilations.

-u<str> cpp Undefine a symbol - cancels a preceding '-d' option.
-v=<dir> cpp Specify an additional directory to search for

#include files. The additional directory is searched
before the default C/dd/DEFS'). If multiple '-v'
options are used, the directories are searched in the
order of the options.

-w=<dir> cc Specify directory for implicit library files - default is
'/dd/LIB'.

-x cc and c68 Use calls to the math trap handler for floating point
(and difficult integer) maths, rather than including
the maths subroutines in the program.

For example:

$ cc -qix test.c

The i' and '-x' options control which libraries cc automatically specifies to
the linker (168). These libraries are taken from the directory '/dd/LIB', unless
the '-w' option is used to indicate a different directory to search:

Options Libraries specified

none clibn.l, math.l, sys.l

x clib.l, sys.l

i cio.l, clibn.l, math.l, sys.l

ix cio.l, clib.l, sys.l

86

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

cc automatically specifies 'cstart.r' (also from the default libraries directory)
as the first ROF on the command line to the linker. For example, the cc
command:

$ cc -q -bp -ix test.c

will (after compilation) produce the linker command line:
168 /dd/LIB/cstart.r ctmp.000006 -o=test
-l=/dd/LIB/cio.1 -l=/dd/LIB/clib.1 -l=/dd/LIB/sys.1

'cstart.r' contains the ROF for the startup code for a C program. It is a "root
psect" produced from the file 'cstart.a', and must be the first ROF in the
linking of a C program. It is not appropriate for trap handlers, file managers,
device drivers, and other executable modules, for which the programmer
must produce (in assembly language) a substitute for 'cstart.a'.

6.5 THE ASSEMBLER
This section describes the Microware assemblers r68 and r68020. It assumes
that the reader is already familiar with the 68000 instruction set, and with
Motorola-type assemblers. Here the aim is to highlight the special features
of the Microware assemblers.

The Microware assembler is a full macro assembler. Two versions are
available. r68 is the standard 68000/010 assembler, while r68020 supports
the additional instructions and addressing modes of the 68020/030/040, plus
the coprocessor instructions for the 68881/2 FPU, the 68851 MMU, and the
built-in MMUs of the 68030/040.

The assembler contains special functions to help in the production of OS-9
modules, and for use by the C compiler. The syntax of the assembler is
Microware's own. The instruction and addressing mode syntax is Motorola
standard, but the directives and pseudo-instructions are not compatible with
other 68000 assemblers.

The output of the assembler is a Relocatable Object File (ROF). A ROF
contains the object code, plus symbolic information, and information
required by the linker to allow multiple ROFs to be linked into one object
module. In particular, the ROF contains tables identifying code and data
offsets within instructions, so that the linker can resolve these at link time
into offsets relative to the start of the module and of the static storage. Note
that the assembler does not produce an output ROF unless the '-o' option is
used, to specify the ROF pathlist.

87

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

All OS-9 object code is position-independent, and uses address register
indirect addressing for data accesses. Therefore the assembler does not
provide special functions for the management of absolute-addressed
programs.

Symbol names may be of any length. All characters are significant, and letter
case is significant. Case is not significant in opcode mnemonics (but it is in
user-defined macro names).

6.5.1 The psect Directive

The psect directive indicates the start of the program code segment of a
source file. The ends directive indicates the end. Only one psect is allowed
in a source file. Code-generating instructions are not allowed outside of the
program segment. Therefore the psect directive is normally one of the first
instructions in a source file, and the ends directive is usually the last
instruction.

The purpose of the psect directive is to supply information in the output
ROF used by the linker in producing the output module header. The psect
directive is essentially a pre-defined macro. The syntax of the directive is:

psect name,type_lang,att_revs,ed!t!on,stacks!ze,entrypo!nt,trapentry

Parameter Description
name psect name - commonly the same as the file name.
type_lang
att_revs

Output module type and language (word).
Output module attributes and revision number (word).

edition Output module edition number.
stacksize Stack estimation (zero to use linker default).
entrypoint Offset to the program execution entry point.
trapentry Offset to the routine to call for uninitialized trap instructions.

"trapentry" must be omitted if the program does not have a routine to handle
uninitialized TRAP #n instructions. The offsets to the execution entry point
and uninitialized trap instruction handler are relative to the beginning of the
psect. At link time the linker adjusts these values to be relative to the start of
the module header.

If multiple ROFs are to be linked to form an output module, only one may
have a non-zero "type_lang" and "att_revs". This is known as the "root psect"
(or "non-null psect"). The type, language, attributes, revision, and edition of
the root psect determine those of the output module. The C compiler always

88

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

produces non-root (null) psects. These are then linked with 'cstart.r', which
contains a root psect.

The linker uses the execution offset defined in the first psect on the linker
command line as the value to put in the module header execution offset
location. Therefore the first ROF on the command line normally contains the
root psect. In the case of C programs, 'cstart.r' must be the first ROF on the
command line, as it provides the initialization function for the C program,
which calls the main() function.

The following example psect uses symbolic names defined in the header file
'DEFS/oskdefs.d' supplied by Microware. This appears to contradict the usual
Microware technique of supplying symbolic names in pre-assembled libraries
(such as 'LIB/usr.l' and 'LIB/sys.l'). The problem is that the assembler and
linker only allow simple addition and subtraction of symbols that are not
known at assembly time (external references that will be resolved from a
library at link time), and - as can be seen in the example - the "shift left"
operator '«' is frequently used with the psect directive.

* Program to print
use

a string
/dd/DEFS/oskdefs.d

typelang equ (Prgrm<<8)+0bjct
attrevs equ (ReEnt«8)+0
edition equ 1
stacksize equ 1000

psect fred,typelang,attrevs.edition,stacksize,progstart
progstart lea strlng(pc),a0 point at string to print

moveq #l,d0 print to standard out
moveq #strlen,dl string length
os9 ISWrltLn print the string
os9 F$Ex1t and exit

str1ng dc.b “hello world' ,13
strlen equ ♦-string

ends

6.5.2 The vsect Directive

The vsect directive creates static storage segments. Within a vsect,
pseudo-instructions are used to reserve static storage and assign symbolic
names to static storage locations. Again, the ends directive indicates the end
of the segment. Any number of vsect segments may appear in a source file,
but they must all lie inside the psect. The linker adds up the size of the vsects
in multiple ROFs to determine the total static storage required by the
program, and to adjust static storage references in program instructions.

89

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

The 'ds' directive is used to define uninitialized static storage. The extensions
'.b', '.w', and '.1' are used to indicate byte, word, and long word locations
respectively. For example:

vsect
fred ds.l 1 one long word
henry ds.w 1 one word
J1m ds.b 20 20 bytes

ends

The assembler ensures that word and long word fields are word-aligned
(that is, they are on an even address).

The 'de' directive can be used to define initialized storage, in the same way
that it is used to define constant data within a program:

vsect
george ds.l 2
percy dc.l 2

ends

two long words (not Initialized)
one long word Initialized to 2

6.5.3 External Symbols

In a project with multiple source files it is likely that some symbols defined in
one source file will be used in one or more other source files, and that
symbols defined in libraries will be used in program files. (Note: OS-9
libraries are simply ordinary ROFs merged together).

r68 generates an external reference in the ROF if it encounters a reference
to a symbol not defined within the source file.

r68 generates a public declaration in the ROF if a symbol is defined with a
terminating colon:

fred: equ 36

or
henry: moveq #0,d0

If a symbol is not defined with a terminating colon it is "private" to the
source file. It will not appear as a symbol in the ROF, and so cannot conflict
with an identical name defined in another source file, even if the other name
is defined as public. The C compiler produces public definitions for all objects
defined at the outermost scope (functions and static storage), unless the
definition is preceded by the static keyword, in which case a private
definition is generated. Private definitions are generated for all storage
defined within functions.

90

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

The linker, if requested by the '-g' option, records all public definitions in a
separate "symbol table" module, with the extension '.stb'. The symbolic
debuggers (ROMbug, debug, the system state debugger sysdbg, and the C
source level debugger srcdbg) can link to this module to permit the use of
symbolic names in debugger commands and expressions (srcdbg reads the
'.stb' file rather than linking to the module). Symbols defined privately are
not known to the debuggers, except to srcdbg, which uses the '.dbg' file
produced by the C compiler.

The assembler and linker do not permit complex expressions containing
external references. Such expressions are limited to adding or subtracting
the external symbol. There are also limitations in the use of external symbols
in the definitions of other symbols, and of course external symbols cannot be
used in conditional assembly statements.

6.6 THE LINKER
The OS-9 linker 168 is not complex in operation. It takes one or more ROFs
and links them to produce an OS-9 object module. One (and only one) ROF
must contain a root psect - normally the first ROF. ROFs need not contain
object code. For example, they may consist only of public symbol definitions,
or static storage definitions. ROFs may be supplied in two ways:

a) In a file whose name is given as a command line parameter
(the file can contain multiple ROFs merged together).

b) In a library file whose name is given by the option.

A library is simply one or more ROFs merged together:
$ merge rofone.r roftwo.r rofthree.r >mylib.l

The linker will include in the output object module all the ROFs specified as
command line parameters, plus any ROFs in the libraries required to satisfy
external symbol references. ROFs are linked in the order in which they
appear on the command line. ROFs in libraries (specified with the '-1' option)
are linked after all ROFs not in libraries.

As the linker reads each ROF it attempts to resolve any external references
in the ROF from public symbols defined in earlier ROFs. External references
that cannot be resolved are added to a table of outstanding references.
Therefore once the linker has read all the ROFs specified as command line
parameters, it has built a table of outstanding external references that must
be satisfied from the ROFs in the libraries.

91

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

The linker only scans the libraries once, in the order they are given on the
command line. It discards library ROFs that do not satisfy currently
outstanding external references. The public symbols defined in a discarded
library ROF are also discarded. Therefore it is important to avoid backward
references to earlier library ROFs within library ROFs. If a ROF satisfies an
outstanding external reference, the whole psect in the ROF (including any
vsects within the psect) is added to the output module, and all public symbols
defined in the ROF are added to the table of public symbols. The option
of the rdump utility can be used to check that a library does not have any
backward references within it:

$ rdump -1 mylib.l

rdump will report any backward references within the library 'mylib.l'.

The linker recognizes a special symbol _sysedit to set the module edition
number, overriding the entry in the root psect. This can be used to set the
edition number from within a C source file. The example below uses the '@'
character to introduce a single line of assembly language in a C source file:

(/include <std1o.h>
(/include <errno.h>
@_sysed1t: equ 3 edition number

6.6.1 Linker Options

The linker has several command line options, of which the most important
are shown below. Note that the case of the option letter is significant:

-a Generate jump table in static storage for
function calls with offsets greater than 32k.

-e=<n> Set output module edition number - overrides
edition number in root psect.

-g Output '.stb' symbol module for symbolic
debugging.

-j
-l=<path>

Print jump table information (see '-a').

Specifies a library file.

-m Print linkage map (values of all public
symbols) to standard output.

-M=<n> Specify addition to output module stack size in
k bytes. The linker accepts but ignores a
negative value. The default stack size is 3k
bytes.

92

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

-n=<name> Set output module name (default is name of
output file).

-o=<path> Specify output file, relative to the current
execution directory.

-0=<path> Specify output file, relative to the current data
directory. Note that the file will not have
execute permissions set (use the attr utility
after linking to set the execute permissions).

-p=<n> Set module header permissions word (in
hexadecimal). For example, '-p=777' sets read,
write and execute permissions for public,
group, and owner.

-r[=<n>] Generate output without module header or
CRC, with absolute addressing relative to
address <n> (default 0) in hexadecimal. This
option is used to generate boot ROMs, for
example.

-s

-S

Print symbol table to standard output.

Make output a sticky module.

-w Sort printed symbol table alphabetically,
rather than by order of value (used with '-s').

-z=<path> Get list of ROFs from a file (or from standard
input, if no pathlist is given), instead of from
the command line.

Example:
$ 168 first.r second.r -l=/dd/LIB/sys.1 -o=prog -msw

The linker has no interactive features, such as defining symbols at link time.

6.7 THE PROGRAM DEBUGGER
The Microware program debugger debug is an assembly-level symbolic
debugger. It debugs user-state programs, using the special "debug process"
system calls provided by the operating system. The process being debugged
exists in its own right, with all the normal facilities and resources of an
ordinary process. The difference is that it is not run until the parent (debug)
makes the appropriate system call, and the parent can install breakpoints
(using a system call).

93

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

debug automatically attempts to link to or load a symbol table module with
the same name as the program module, and the extension '.stb'. It searches
first the current execution directory, and then each directory specified in the
PATH environment variable. For each directory it first searches the 'STB'
subdirectory, and then the directory itself. Once the '.stb' file has been found,
all publicly declared symbols can be displayed and referenced by name. If
debug cannot find a '.stb' file for the program it reports an error, but does
not abort.

debug also attempts to find a '.stb' file for each trap handler module the
program links to. For example, programs generated with the '—i* option to the
C compiler use the cio trap handler, debug reports that no '.stb' file can be
found for cio when the first cio trap call is made by the program.

The debugger provides:

• Program breakpoints.

• Inspection/modification of memory.

• Inspection/modification of processor registers.

• Disassembly of memory.

• Forking the program to be debugged.

• Linking to OS-9 modules.

• Controlled program execution.

The debugger considerably simplifies memory and program inspection by
providing an extended set of operators for expressions. For example:

dbg: d [,a0+6]+.d0 20
means "display $20 bytes from the address calculated by taking the address
stored at the location given by the aO register plus 6, and adding the dO
register". Also, wherever constants are allowed, symbolic references may be
used.

Because the T command of debug allows linking to any module, debug can
be used to inspect or modify any module in memory. For example, temporary
patches can be made to device descriptors. Such patched modules can be
saved to disk (using the save utility), and the CRC and header parity can be
corrected in the saved file using the fixmod utility.

The T command causes debug to link to the named module, debug puts the
address of the module in relocation register 7, known as '.r7'. (debug
maintains eight relocation registers, which are logically software extensions

94

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

to the processor registers). Any relocation register can be named as the
default base address to use for display and disassembly, using the '@'
command. This is very convenient for inspecting and modifying modules. For
example:

dbg: 1 term
dbg: S7
dbg: c 50
0x00000050+r7:18 19
0x00000051+r7:08 .
dbg:

This example links to the device descriptor term (the usual name for the
first serial port), and sets relocation register 7 as the default base address.
Location $50 within the module is inspected and modified. In the case of an
SCF device descriptor, this has changed the "lines per page" entry from 24 to
25. Of course, this particular operation can be carried out much more simply
using the xmode utility:

$ xmode /term pag=25
Note that if the system is using the System Security Module (SSM) for
inter-task memory protection, the device descriptor module must have write
permission in the module permissions field of its module header. If not,
debug and xmode will generate a bus error (error number 102 -
E$BusErr) when trying to write to the module. By default the linker does
not set write permissions when creating a module. The fixmod utility can be
used to change the permissions of a module in a file. For example:

$ fixmod dd.dO -up=777
sets the read, write, and execute permissions for private, group, and public
access in the module in the file 'dd.dO'.

debug has two ways of running the program. The first uses
kernel-controlled single stepping ("tracing") through the program. The
kernel maintains a list of breakpoints for the process being debugged. It
executes the program instruction by instruction, until a breakpoint is hit or
the program exits. This is slow, but allows breakpoints to be set even if the
program is in ROM. The second method ('x -1' command) runs the program
at full speed - breakpoints are put into the program code as illegal
instructions. When the program hits an illegal instruction the kernel stops
the program and wakes up the debugger.

The C source level debugger srcdbg uses exactly the same approach as
debug (except that it reads the '.stb' file, rather than linking to the '.stb'
module). In addition, it uses the information in the '.dbg' file generated by
the C compiler, assembler, and linker to associate the machine code program

85

C COMPILER, ASSEMBLER, LINKER, AND DEBUGGER

counter with the C source file. This allows the user to view and step through
the program at the C source level, and to view and change C variables. Note
that the '.dbg' files are not loadable modules.

96

	CHAPTER 6
C COMPILER, ASSEMBLER, LINKER, AND
DEBUGGER
	6.1 THE DEVELOPMENT SYSTEM
	6.2 THE C COMPILER
	6.3 FILE NAMING CONVENTIONS
	6.4 CC OPTIONS
	6.5 THE ASSEMBLER
	6.5.1 The psect Directive
	6.5.2 The vsect Directive
	6.5.3 External Symbols

	6.6 THE LINKER
	6.6.1 Linker Options

	6.7 THE PROGRAM DEBUGGER

