
SYSTEM MANAGEMENT

CHAPTER 5

SYSTEM MANAGEMENT

5.1 THE SYSTEM MANAGER
Every computer system - even a single-user system - should 
have a user designated as the System Manager. The System 
Manager has responsibility for:

a) Allocating user IDs, groups, and passwords.

b) Creating and amending the system startup procedure.

c) Formatting and maintaining the system disk (the main disk 
drive).

d) Maintaining backups and archives of the system disk.

The System Manager is always the super-super user - user zero of group 
zero. Many system functions are only available to the super user group, or 
even only to the super-super user. Modules created by the super-super user 
may only be loaded from files owned by the super-super user. This gives 
protection against super-user facilities being used illegally.

The initial user ID and group is 0.0. Therefore on a single user system the 
user is always the super-super user, and has access to all facilities. When a 
user is logged on, the user ID and group are taken from the password file, 
according to the user's name and password. So on a multi-user system users 
can be prevented from unauthorized access to resources, or modification of 
other users' filing systems.

71



SYSTEM MANAGEMENT

5.2 THE FILING SYSTEM
Disk files have read, write, and execute permissions for private and public 
use. For historical reasons the disk file manager ('RBF') does not support 
separate group permissions, unlike the other components of the operating 
system. The private permissions relate to use by the file owner and other 
members of the same group. The public permissions relate to all other users. 
Therefore a file that has only private read and write permissions can only be 
read, modified, or deleted by members of the file owner's group. Note that 
the same historical reasons - compatibility with the OS-9/6809 filing system 
- dictate that the disk filing system can only store the user ID and group as 
byte values, whereas elsewhere they are stored as word values. This imposes 
a practical limit of 255 on user IDs and group numbers.

To modify the attributes (permissions) of a file - for example, using the attr 
utility - a user must have write permission for the file. The System Manager 
has the special ability to modify the attributes of any file. Therefore by doing 
so he can gain access to any file, and read, modify, or delete it. Note that 
directories are files, and have file attributes. If a user does not have 
permission to access a directory, he cannot access any of the files in the 
directory.

The dcheck utility checks the integrity of the filing structure on a disk, and 
can make simple repairs. Note that sectors found to be bad during the verify 
pass of disk formatting will be reported as "allocated but not in the file 
structure".

5.3 THE PASSWORD FILE
The password file is the file 'SYS/password' in the root directory of the 
"initial mass storage device" specified in the init module (usually '/dd' or 
7h0'). It should only have permissions for private read and write - for the 
System Manager (group zero) - to prevent modification by other users. The 
password file is a simple text file, that can be created and modified by any 
text editor, such as the umacs screen editor. There is a single line entry for 
each user. The elements on the line are separated by commas. For example:

Henry,penguin,1.3,100,.,/dd/HENRY,shell -p="@Henry: 11

Henry User name.

penguin User password.

72



SYSTEM MANAGEMENT

1.3

100

/dd/HENRY

shell -p="@Henry:

User group number and user ID 
(separated by a full stop '.') - user 3 of 
group 1.

Initial process priority.

Initial execution directory - no change 
from current.

Initial data directory.

Initial command line to execute - fork 
the shell command line interpreter, 
with the '-p' option to set the prompt 
string.

The initial directories are relative to the directories of the login utility 
processing the password file, which in turn will have inherited the directories 
of the tsmon utility that normally monitors a terminal and forks login when 
the [CR] key is pressed.

When assigning process priorities, bear in mind that a small absolute 
difference in priorities has a large effect on the allocation of CPU time.

5.4 SYSTEM STARTUP
After going through its coldstart procedure, the kernel forks up the program 
whose name is given in the init configuration data module - usually sysgo. 
The sysgo supplied by Microware forks a shell to execute a text file 'startup', 
and then goes into an endless loop forking up a shell and waiting for it to 
die.

The source of sysgo (in assembly language) is supplied in the file 
'SYSMODS/sysgo.a', to allow customization for special applications.

The 'startup' file - located in the root directory of the initial mass storage 
device specified in the init module - is the place to put commands to load 
additional modules not present in the boot file, request the date and time (if 
the system does not have a battery-backed clock chip), and fork any required 
incarnations of tsmon, for multi-user systems. For example:

-nt
* The next line is needed if the system does not have a
* battery-backed clock chip: 
setime </term
* Load a 'dd' alias device descriptor for the hard disk: 

73



SYSTEM MANAGEMENT

load BOOTOBJS/dd.hO 
chx /dd/CMDS 
chd /dd 
mfree
echo Starting up /tl, /t2, and /t3
echo "Hit RETURN to log on" I tee /tl /t2 /t3 
tsmon /tl /t2 /t3 &
* The next line asks for a logon on the system console.
* In this case the 'startup' shell never terminates: 
tsmon /term

5.5 THE .LOGIN FILE
When login (forked by tsmon when [ENTER] is hit) forks the initial 
command line shown in the password file, it does so with a special parameter 
that causes the shell to look for a file '.login'. (Note that all files whose names 
start with are normally hidden from dir, but may be viewed with the '-a' 
option). If the file is present in the current directory the shell executes the 
command lines in the file before giving the user the prompt.

This is a very important mechanism, as it allows environment variables to be 
set, and the default directories to be changed. For example:

setenv TERM vtlOO
setenv _sh 0
setenv HOME ../PROJECTS/PENGUINS 
chd 
echo "You are in: " -r 
pd

The environment variable TERM is used by screen-orientated programs, 
such as umacs, to determine the type of terminal that is being used. The 
environment variable '_sh' sets the initial "shell level", used by the shell 
when the first character of the prompt string is '@'. When a shell is forked, 
it looks for this environment variable. If it exists, the shell increments its 
value, and substitutes it for the '@' character in the prompt string (unless it 
is zero, in which case the '@' is simply not displayed). This helps keep track 
of shells forked from other programs, such as umacs or debug - the prompt 
string appears with a leading number if the shell has been forked from 
within another program.

5.6 DISK FORMATTING

Disk formatting is achieved using the format utility, format has three 
phases:

74



SYSTEM MANAGEMENT

1) Physical format.

2) Verify.

3) Logical format.

The physical format phase issues a format request to the device driver, to 
physically rewrite the sectoring information on the disk. The verify phase 
reads all the sectors on the disk, to determine which are faulty. The logical 
format builds the disk identification sector, the allocation bitmap, and the 
root directory. It effectively "forgets" all files previously existing on the disk.

The physical format and verify phases may be omitted. However, it is 
recommended that the verify pass always be performed, unless you are 
certain the disk has no errors, or the drive has automatic defect handling (all 
modern SCSI hard disk drives have).

The format utility '-c' option allows the specification of a "cluster size" other 
than the default of one (it must be a power of two). The cluster size is the 
number of sectors per bit in the allocation bit map, and is the minimum 
allocatable block of disk space. RBF uses the bulk of the File Descriptor 
sector of a file for the file's segmentation table. Each entry takes 5 bytes (a 
24-bit start logical sector number, and a 16-bit number of sectors). For 
example, if the sector size is 256 bytes, the table can accommodate 48 entries, 
each referring to a maximum of 65535 sectors.

However, there is a further restriction on allocation of space in a file. RBF 
will not allocate a segment for which the allocation would cross a bit map 
sector boundary. This limits a segment to a maximum of "eight times the 
sector size" clusters. For example, if the sector size is 256 bytes, a segment 
cannot exceed 2048 clusters. At this sector size a file cannot have more than 
98304 clusters (approximately 24Mbytes at one sector per cluster). Therefore 
it is recommended that larger disks be formatted with a cluster size greater 
than 1 - approximately "disk size in'Megabytes" divided by 10, if the sector 
size is 256 bytes.

5.7 INSTALLING A BOOT FILE

On systems where the operating system is not in ROM, the boot program 
reads a file known as the boot file from disk. This file contains at least the 
basic operating system. To simplify the boot program, special information is 
put on the disk to identify the boot file. This is done using the utility os9gen.

75



SYSTEM MANAGEMENT

The disk identification sector (sector zero) of each disk contains the start 
sector number and size (in bytes) of the boot file on the disk. In versions of 
OS-9 earlier than 2.4, to simplify the booting procedure the boot program 
assumes that the boot file is contiguous. It calculates the number of sectors in 
the boot file, from the size given in sector zero, and simply reads that many 
sectors starting at the sector number given in sector zero. Because the boot 
file size in the identification sector is a 16-bit word, the boot file size is 
limited to 64k bytes. (This is a historical limitation from OS-9/6809).

From OS-9 version 2.4 onwards, Microware offers the implementor an 
alternative set of boot ROM example source code, known as 'CBOOT' 
(because it is written in C). This code has the ability to read any file, using 
the segmentation information in the file’s File Descriptor sector. This uses an 
alternative form of the information in sector zero. The "boot file size" field is 
set to zero, indicating that the alternative form is being used. The "boot file 
start sector number" is the sector number of the File Descriptor sector for 
the boot file. The boot program reads the File Descriptor sector, and from it 
takes the segmentation table, which allows it to read a boot file of any size, 
even if the file is not contiguous on disk.

If boot file sector number in sector zero is zero, the disk has no boot file 
installed. The os9gen utility is used to install a boot file on a disk. It can 
simply set the values in sector zero to point to a file already on the disk, or 
alternatively build the file as well, by merging other specified files. If the 
older contiguous boot file form is used, os9gen also checks that the file is 
contiguous.

The boot file consists simply of modules merged together. The kernel should 
always be the first module, as many boot programs assume it will be. 
Modules which cannot fit in the boot file (if the older contiguous form is 
used, limited to 64k) may be loaded in the 'startup' file. os9gen has the 
following options:

-b=<n> Set size of memory buffer in which to build 
boot file - in kbytes.

-e Generate later non-contiguous boot file (can 
be greater than 64k bytes in size).

-q=<path> Don't build boot file, just set sector zero values 
to point to existing file on boot disk.

-r Clear sector zero boot file fields - makes disk 
non-bootable.

76



SYSTEM MANAGEMENT

-x Pathlists to files for building the boot file are
relative to the current execution directory.

-z[=<path>] Take the list of pathlists to build the boot file 
from standard input (or a file), rather than 
from command line parameters.

Use the b' option to inform os9gen of the expected maximum size of the 
boot file. The given value must not be less (in kbytes) than the size of the 
boot file, and cannot be greater than 64 unless the '-e' option is specified.

If the boot program supports non-contiguous boot files, it is much easier to 
use this facility (’—e' option), rather than being concerned about keeping the 
size of the boot file below 64k, and ensuring that it is contiguous (although 
os9gen will ensure this if at all possible). In this case the '-q' option of 
os9gen can be used to set the sector zero values to point at any file into 
which the boot modules have been merged.

If the earlier (contiguous) boot file form is used, os9gen must merge the boot 
file itself, as this gives a much greater likelihood that the file will be 
contiguous. In this case it is advisable to use the '-z' option, requesting 
os9gen to read the file names to merge from a text file you have created. 
This makes it much easier to create boot files at a later date, perhaps with 
modifications for special purposes. If such a file has not been provided with 
your system, use the mdir utility with the '-e' option to display the module 
directory. The modules in the boot file will be listed first, and there will be a 
distinct break in the sequence of addresses between the last module in the 
boot file and the first module loaded after booting.

os9gen and format require that the device descriptor for the disk drive has 
formatting enabled (this is one of the options flags in the device descriptor). 
Usually this is not the case for hard disk descriptors, to prevent 
unintentional or unauthorized formatting, and a special descriptor (often 
hOfmt or fhO) must be explicitly loaded and used. For example:

$ load BOOTOBJS/hOfmt
$ chd /dd/CMDS/BOOTOBJS
$ os9gen /hOfmt -z=bootlist -b=100 -e

The '-q' option of os9gen requires that the device containing the current 
data directory, or the device name in the pathlist if a full pathlist is given for 
the file, be the same as the target device name (and it is letter case sensitive). 
For example:

77



SYSTEM MANAGEMENT

$ load BOOTOBJS/hOfmt
$ chd /hOfmt
$ os9gen /hOfmt -q=oldboot

5.8 ARCHIVING
Computer data (such as program source files) is usually very valuable, if only 
because of the time that went into creating it. The loss of some data can have 
catastrophic effects for a business. Current development projects may be set 
back by months, and finished products may no longer be supportable. Hard 
disk drives are by no means infallible, so it is obviously very important to 
"back up" the computer's hard disk regularly, to minimize the loss if the hard 
disk does fail.

Yet it is surprising how few development systems are regularly backed up 
onto tape or other archiving medium. Generally this is because most 
development systems are not originally specified with a tape drive, and it is 
often difficult to convince management to buy one as an afterthought. If the 
computer does not have a tape drive, the only alternative archiving medium 
usually available is floppy disk, and archiving a hard disk with perhaps 
lOOMbytes of files onto floppy disks is a tedious and time-consuming task 
that is generally only undertaken once every few months, if ever.

It is for this reason that a system manager should be appointed for the 
computer even before it is purchased. He will then have the incentive to 
ensure that the computer is purchased with a tape drive already installed. If 
you already have a computer, and it does not have a tape drive (or other high 
capacity off line storage, such as optical disk), I strongly recommend that you 
purchase one.

How frequently you back up the hard disk depends on the rate at which you 
generate valuable data - that is, how long it would take you to regenerate the 
data created since the last backup if the hard disk fails just before the next 
backup. Once a week is usually sufficient. Use at least two tapes, and cycle 
between them, in case the hard disk drive fails while you are generating the 
backup tape. It is not necessary to save all of the hard disk files to tape at 
every back up. Instead, you can save only the files that have changed since 
the last complete back up. This is known as an "incremental" back up. For 
example, you might do a complete back up every three months, and an 
incremental back up every week. It is advisable to keep the backup tapes at a 
different site from the computer system, in case of fire or burglary.

78



SYSTEM MANAGEMENT

A tape drive is not only useful for backing up the hard disk to protect against 
hardware failure. Because the tape is removable (unlike most hard disks) it 
provides "off line storage". That is, any amount of data can be stored, by 
using additional tapes. To access the data the appropriate tape must be 
placed in the tape drive. This allows the computer to generate, save, and 
access unlimited amounts of data, even though it only has immediate rapid 
access to perhaps 200Mbytes, on the hard disk drive. The saving of data that 
is not presently required (but may be required in the future), so that space 
can be freed on the hard disk, is known as archiving. Because the archived 
data is no longer available on the hard disk it is important to keep a careful 
written record of what is on each tape. It is also useful to store a printed 
directory listing with the tape.

Microware provide the fsave and frestore utilities for backing up (and 
archiving) and retrieving files. The use of these utilities is described at 
length in the OS-9 User's Manual, fsave and frestore will work with any 
form of storage medium, and provide incremental back up and interactive 
retrieval facilities.

79



SYSTEM MANAGEMENT

80


	CHAPTER 5
SYSTEM MANAGEMENT
	5.1 THE SYSTEM MANAGER
	5.2 THE FILING SYSTEM
	5.3 THE PASSWORD FILE
	5.4 SYSTEM STARTUP
	5.5 THE .LOGIN FILE
	5.6 DISK FORMATTING
	5.7 INSTALLING A BOOT FILE
	5.8 ARCHIVING


