
OS-9 MODULES, MEMORY, AND PROCESSES

CHAPTER 3

OS-9 MODULES, MEMORY, AND PROCESSES

3.1 THE OS-9 MEMORY MODULE
The OS-9 memory module concept is at the heart of many of the 
innovative features that make OS-9 applicable to such a wide 
range of applications. It permits the operating system to keep 
track of programs, operating system components, and common 

data areas in memory. Irrespective of the absolute location of these items in 
memory, programs can locate them by passing a name to the operating 
system, similar in some ways to accessing a file on a disk drive.

An OS-9 module is a program, data structure, operating system component, 
or any string of bytes, with an identifying header stuck on the front and a 
Cyclical Redundancy Check (CRC) tagged on the end.

The header contains information about the module, to prevent its 
unauthorized or incorrect use, and facilitate automatic mechanisms such as 
finding all modules in ROM at startup, initialization of the data space of a 
program, and protection against data corruption by module CRC checking. 
Very importantly, the header also contains an offset to the module name 
string.

A module is known by its name. All modules currently in memory must have 
different names (unless of a different type or language - see below), although 
modules with the same name may be contained in files (for example, on disk).

The addresses of all modules in memory are held in the "module directory", 
which is a table built and maintained in memory by the operating system. 
Each entry in the module directory contains the address of the module, the 
current number of "links" (uses) to the module, a group identifier (explained 
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later), and a module header parity check value, to guard against corruption 
of the module header.

When a program or operating system function wants to locate a module in 
memory, it makes an operating system "link to module" call (F$Link), 
passing the name of the module. The kernel looks at each module directory 
entry in turn. The module address points to the module header, from which 
the kernel finds the name of the module, and compares this with the name 
passed to it. This is repeated until it finds the module requested.

[ The term "link" causes some confusion, as it has many meanings in software 
terminology. In the OS-9 environment it has two principal meanings:

a) To get the address of a module in memory, 
by using the operating system F$Link 
system call.

b) To build a program (or other module) from 
one or more Relocatable Object Files 
(ROFs), using the "linker" utility.

There is no connection at all between these two functions. The OS-9 linker 
utility is called 168. ]

Modules may be present in ROM at startup, or be loaded from disk (or other 
I/O device) at any time. When a module is to be loaded, the kernel allocates 
memory equal to the size of the file, and reads the file into that memory. It 
then checks the memory for valid modules, adding them to the module 
directory. Some operating system calls cause a module to be implicitly loaded 
from disk - for example, if a program fork is requested, and the program 
module is not already in memory.

Modules explicitly loaded from disk (such as by the load utility) are retained 
in memory even while not being used. For example, commonly used utilities 
can be loaded, using up memory, but saving on disk accesses. When the 
module is no longer required it can be removed from the module directory 
and the memory released, by "unlinking" the module. This is the function of 
the unlink utility. The module header may have the "sticky" (or "ghost") flag 
set. In this case a module that has been implicitly loaded (such as by a "fork" 
request) will stay in memory after it has been used, until its memory is 
needed for something else. The Microware-supplied utilities are sticky 
modules.
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Programs must be in modules. A module may be loaded by the operating 
system anywhere in free memoiy. Therefore programs (in general) must be 
position-independent. Their data space may be anywhere in free memory, 
and is separate from the program space. This allows program modules to be 
directly ROMmable and re-entrant (as explained earlier).

The operating system itself is broken up into several modules, facilitating 
customization and expansion. The module system means that no explicit 
"system build" is required. All modules in ROM and in the boot file are found 
on startup and installed in the module directory.

3.2 A PROGRAM MODULE
The module header and CRC are automatically generated by the linker when 
a program (or other module) is assembled or compiled, so there is no added 
complication to creating programs. The module header consists first of a 
universal section - the same structure in all modules - followed by a parity 
check word. After this comes the second part of the header, which varies 
depending on the purpose of the module, as specified by the module "type" 
code in the universal part of the header.

As an example, the layout of a program module is shown in figure 5 on the 
next page. As a module can be loaded anywhere in memory, items within the 
module cannot be referred to by their absolute memory address. Instead, 
they are identified by their offset from the beginning of the module header 
(as if the module were loaded at address 0). In the following description (as 
throughout this book), a byte is 8 bits, a word is 16 bits, and a long word (or 
just "long") is 32 bits. A prefix of indicates a hexadecimal (base 16) 
number. The offsets from the start of the module header are given in 
hexadecimal. The C symbolic names are taken from the file 'DEFS/module.h'. 
There is also an assembly language file 'DEFS/module.a' - the structure item 
names are similar, though not the same.

3.2.1 Sync Word

The value $4AFC is an illegal instruction in the 68000 family instruction set, 
and so occurs very rarely in memory. Starting the module header with this 
"magic number" speeds up the kernel's search for modules in ROM at 
coldstart. It checks each word in ROM - only if the word is $4AFC does the 
kernel attempt to check the module header parity and Cyclical Redundancy 
Check. The sync word is also useful to the user when looking through 
memory.
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Offset Size C name HEADER

$0000 word _msync Sync word $4AFC
$0002 word _msysrev System revision ID
$0004 long _ms1ze Module size
$0008 long _mowner User/group of creator
$000C long _mname Offset to module name string
$0010 word _maccess Module access permissions
$0012 word _mtylan Type and language
$0014 word _mattrev Module attributes and revision
$0016 word _med1t Edition number
$0018 long _musage Offset to usage comments string
$001C long jsymbol Offset to symbol table
$0020 word _mident Ident code
$0022 _mspare 12 bytes reserved
$002E word _mpar1ty Header parity
— EXTENDED HEADER
$0030 long _mexec Offset to program entry point
$0034 long _mexcpt Offset to default trap entry point
$0038 long _mdata Minimum program data space
$003C long _mstack Minimum program stack size
$0040 long _midata Offset to data initialization table
$0044 long _midref Offset to data pointers initialization table

$0048 PROGRAM BODY

long CRC

• Figure 5 - Module header structure.

3.2.2 System Revision ID

A number indicating which version of the module header follows. So far the 
module header structure has not changed, but this field allows for backward 
compatibility if the header structure is changed in future versions of OS-9.

The current value in this field is $0001.
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3.2.3 Module Size

The size of the whole module, including the header and CRC.

3.2.4 User and Group

This field gives the group number (in the high, or first word of the long 
word) and user number of the user who created the module. For example, if 
the user creating the module were user 4 of group 2, this field would contain 
$00020004. This allows modules to be protected against use by other users, if 
desired, by clearing the appropriate flags in the access permissions field.

If a use of a module (link, fork, use in an I/O sub-system) is attempted by the 
same user (same user ID and group number) as the module creator, the 
desired modes (read and execute in the F$Link system call, for example) are 
checked against the private field of the module access permissions. The same 
check is made if the access is made by a member of the super user group 
(group zero). If the user has the same group number as the module creator 
but not the same user ID, the desired modes are checked against the group 
field of the access permissions. Otherwise, the desired modes are checked 
against the public ("world") field of the access permissions. If the appropriate 
permissions flags are not set, the attempted system call fails with a "no 
permission" (E_PERMIT) error.

The kernel also uses the user/group field as a privilege mechanism. Only 
modules created by a user of group zero (the super-user group) can make 
certain system calls. The super-user group can compile programs to give 
controlled access to certain resources by other users, who can run the 
programs.

3.2.5 Offset to Module Name

The linker adds the desired module name string (terminated with a null 
character, binary zero) to the body of the module, and sets this field with the 
offset (from the start of the header) to the name string. The module directory 
entry contains the address of the module (start of the header). The kernel 
reads the offset to the name string from the header, adds it to the address of 
the module, and so can compare the name of the module to the name 
provided by a program that wishes to locate ("link to") the module.

3.2.6 Access Permissions

Only the low twelve bits of this word are used, as three groups of four bits:
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Bit

0

Permission

Private read (creator only)

1

2

Private write

Private execute

3

4

reserved

Group read (members of creator's group 
only)

5

6

7

8

9

10

Group write

Group execute 

reserved

Public read (any user)

Public write

Public execute

11 reserved

On a system without the System Security Module software (and memory 
management hardware) the flags have the following effect when set:

read allows load, link, and unlink

execute

write

allows load, link, unlink, and fork 

no function

On a system with the System Security Module software and memory 
management hardware, the flags have the following effect when set:

read allows load, link, and unlink

execute 

write

allows load, link, unlink, and fork

allows writing to the module in memory once linked 
to

A violation of any of these permissions when attempting to gain access to the 
module (for example, by linking to it) gives an error number 164 
(EPERMIT).
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3.2.7 Type and Language

The "type" code is in the high (first) byte, while the "language" code is in the 
low byte. The type code indicates the intended usage of the module. 
Microware have reserved codes 0 to 15, of which the following codes are 
currently used:

Code

1

2

4

11

12

13

14

15

Module type 

program

subroutine

data module 

trap handler

operating system component (other than I/O)

file manager 

device driver

device descriptor

The kernel will check the type code against an attempted usage. For 
example, trying to fork a module that is not type 1 gives an error number 234 
(E_NEMOD). If a program specifies a type code of zero when trying to link 
to a module, the kernel will allow the link whatever the actual module type. 
Otherwise, the type code must match.

Note that it may not be advisable at present for users to make use of the 
undefined type codes (16 to 255). This is because the "unlink" system call 
(F$UnLink) assumes that any module with a type code of 13 or higher is 
part of the I/O system, causing a search of the device table to see if the 
module is still in use. However, this should not cause a problem, as the 
module will (presumably) not be found in the device table.

The language code indicates the encoding of the module body. Microware 
have reserved codes 0 to 15, of which the following codes are currently used:

Code

1

2

Language

object (machine code) executable 

compiled Basic intermediate code

Other codes are defined, but have no use at present:
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Code

3

4

5

6

Language

compiled Pascal intermediate code

compiled C intermediate code

compiled Cobol intermediate code 

compiled Fortran intermediate code

The kernel will check the language code against an attempted usage. For 
example, trying to fork a module that is not type 1 gives an error number 234 
(E_NEMOD). If a program specifies a language code of zero when trying to 
link to a module, the kernel will allow the link whatever the actual module 
language. Otherwise, the language code must match.

The shell uses the language code to automatically fork up an appropriate 
run-time interpreter for intermediate code programs. For example, if the 
language code is 2, shell will fork the program runb to run the Basic 
compiled intermediate code program.

Note: the kernel will allow multiple modules of the same name in the module 
directory, provided they have a different type and/or language code. A link 
(or an unload - an unlink by name) with a type and language code of zero, 
will operate on the first module of that name in the module directory.

3.2.8 Attributes and Revision

The module attributes are in the high (first) byte of this field. The revision 
number is in the low byte.

□ Module attributes

The attributes are a set of bit flags, indicating special treatment by the 
kernel:

Bit

7

6

5

Meaning when set 

module is sharable 

sticky module 

supervisor (system) state module

If the module is sharable, the kernel will permit a link count greater than 
one. This flag is normally set for all modules. If this flag is clear, only one 
link is permitted at a time. A device descriptor with this bit clear can only
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have one path open to it at a time. A program module with this bit clear is 
not re-entrant - there can only be one incarnation of the program at any 
one time - which would allow it to be self modifying.

A "sticky” module remains in memory even when its link count has been 
reduced to zero. A further reduction in its link count (by the F$UnLink 
system call, for example from the unlink utility) causes the module to be 
removed from the module directory, and its memory returned to the free 
pool. Also, if the operating system receives a memory request that it cannot 
satisfy from the existing free pool, it will remove sticky modules whose link 
count is zero from the module directory (in the order of their entry in the 
table) until enough memory is available. This mechanism allows commonly 
used modules to remain in memory after use until they are needed again, or 
until their memory space is needed.

The "supervisor state" flag is set for all operating system components, and for 
programs (and trap handlers) that are to run in supervisor (rather than user) 
state. The 68000 family microprocessors have two operating states - 
supervisor and user. The processor's internal status register has a bit that 
indicates supervisor state when set, user state when clear. Certain 
instructions are not permitted in user state. Any operating system call or 
external interrupt automatically puts the microprocessor into supervisor 
state, so all operating system components run in supervisor state. This 
mechanism provides essential protections between programs in a multi-user 
system, and (with memory management hardware) prevents programs from 
corrupting the operating system.

For these protections to work, programs run in user state. In certain 
applications, however, it may be advantageous to run a program (or trap 
handler) in supervisor state. This requires great care, and a thorough 
understanding of the effects (described in the chapter on OS-9 System 
Calls).

Supervisor state is often called system state, because the operating system 
runs in this state. In this book the term "supervisor state" refers to the 
physical operating state of the microprocessor, while "system state" refers to 
the logical state of the software. For example, a different microprocessor 
might not have a supervisor state, but the computer would still be logically in 
system state when executing an operating system function or interrupt 
service routine.
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In OS-9 supervisor state and system state are synonymous. The operating 
system tests the supervisor state bit of the processor's status register to 
determine if the computer is in system state.

□ Module revision number

The revision number feature allows modules to be superseded without 
removing them from memory. It is useful as a means of overriding 
out-of-date modules in ROM, or in the boot file (the boot file is ROM as far 
as the operating system is concerned).

When checking a module in ROM on coldstart, or when loading a module 
into memory, the kernel scans the module directory to see if a module of the 
same name, language code, and type code is already in the module directory. 
If so, the kernel compares the revision numbers of the two modules. If the 
new module has a higher revision number than the module already in the 
module directory, the kernel overwrites the existing module directory entry 
with the information about the new module.

If the two modules have the same revision number, the kernel checks that 
the following conditions are satisfied:

1) The system supports "sticky" modules (the B_Ghost 
bit of the D_Compat byte of the System Globals is 
set).

2) The link count of the old module is zero.

3) The link counts of any other modules in the same 
module group are zero.

4) The new module is not in the same module group as 
the old module (this check was omitted in OS-9 
version 2.2).

5) The kernel has finished its coldstart (the D_ID field 
of the System Globals contains $4AFC).

If all these conditions are satisfied, the kernel frees the memory of the old 
module and overwrites the existing module directory entry with the 
information about the new module. If any of the conditions is not satisfied, or 
the revision number of the new module is lower than the revision number of 
the old module, the kernel ignores the new module (and returns the memory 
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used to read in the file, in the case of a load), and returns error 231 - 
"module already known" (E_KWNMOD).

It is very important to note that if the new module's revision number is 
higher than that of the old module, the kernel makes no checks to ensure 
that the old module is not in use before it deletes the module directory entry. 
Also, the kernel does not return the memory of the old module to the free 
pool (because it assumes the module is in ROM). Therefore this feature must 
be used with care.

3.2.9 Edition Number

This is a software maintenance edition number for the module. It is set by 
the programmer when the module is created, and is not used by the kernel. It 
allows a user to identify the edition of a program or operating system 
component when asking for technical assistance from the software supplier.

3.2.10 Other Fields

□ Offset to usage comments string

This field is not used at present.

□ Offset to symbol table

This field is not used at present.

□ Identcode

The ident code is intended to be used by the ident utility when inspecting a 
module header to display information about the module, ident does not use 
it at present.

3.2.11 Header Parity

This word is the one's complement of a word-by-word exclusive OR of all 
the preceding words in the header. Therefore the header parity is correct if a 
word-by-word exclusive OR of all words in the header up to and. including 
the header parity gives a result of $FFFF.

While checking the module header parity prior to installing the module in 
the module directory, the kernel also calculates a "checksum" over the 
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module header, and saves this value in the module directory entry for the 
module. When the kernel receives a request to link to the module, it rechecks 
this module header checksum, and verifies that the header checksum word 
now calculated from the header matches the value saved in the module 
directory. If there is a change, the kernel assumes that the module is corrupt, 
and returns an error number 236 (E_BMHP). This gives some protection 
against disastrous system errors that might occur if the kernel were to use 
the entries in the header of a module that has been corrupted after being 
loaded into memory.

In OS-9 version 2.2 this checksum was simply the low 16 bits of the sum of 
all the words in the universal module header, including the parity word. In 
later versions the calculation is slightly more complex - after each word 
addition the word result is rotated right by a number of bits equal to its own 
value (modulo 16).

3.2.12 Offset to Program Entry Point

Also known as the "execution offset", this is the offset from the start of the 
module header to the first instruction to execute in a program. From this the 
kernel can calculate the absolute address at which to start program 
execution, by adding this field to the actual address in memory of the 
module. The first instruction to execute need not be the first instruction in 
the module - it can be anywhere in the module.

The linker calculates this offset when creating the module, using the entry 
point offset given in the "root" psect in the files used to create the module. 
The linker can create a program from multiple files, but there must be one 
and only one file containing a "root" psect (described in the chapter on the C 
Compiler, Assembler, Linker, and Debugger), so no confusion can arise.

The C compiler only produces non-root psects. When a C program is linked, 
the 'cc' executive program adds the file 'LIB/cstart.r' at the front of the list of 
files to link, 'cstart.r' (created from 'C/SOURCE/cstart.a') is a root psect, 
containing a function to initialize the program and then call the main() 
function of the program.

3.2.13 Offset to Default Trap Entry Point

This offset is produced and used in a similar way to the execution offset. The 
kernel uses it to calculate the address of the program function to call if the 
program uses a 68000 TRAP instruction for which it has not installed a trap 
handler module.
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3.2.14 Minimum Program Data Space

When creating a module, the linker adds up the static storage (variables) 
definitions in each of the Relocatable Object Files to calculate the total static 
storage requirement of the program, and sets this field with that value.

3.2.15 Minimum Program Stack Size

The linker sets this field with an assumed maximum stack usage by the 
program. As program functions can be recursive (call themselves directly or 
indirectly), the linker cannot actually calculate a real maximum stack 
requirement. It uses a default value (3k bytes), which can be overridden by a 
command line option to the linker.

The kernel adds together the "minimum data space" and the "minimum stack 
size" fields to calculate the total memory required (initially) by the program. 
It adds to this the size of the parameter string being passed to the program 
by the parent process (because the kernel copies the parameter string from 
the parent's buffer to the top of the child's memory space), and the 
"additional stack size" parameter passed to the F$Fork system call. The 
result is the total memory the kernel must allocate for the new process. The 
low part of the memory allocated is used for the static storage, the middle 
part for the stack, and the top part for the copy of the parameter string.

3.2.16 Offset to Data Initialization Table

The offset from the start of the module header to a table (built by the linker) 
of data values for use by the kernel when initializing the program's static 
storage. The C language permits static storage variables to be initialized with 
constant values at startup. The kernel uses this table to implement this 
feature.

The table structure is as follows:

Offset Size Description
$0000 long Offset within static storage to start of area to initialize.
$0004 long Size of area to initialize, in bytes.
$0008 bytes The initialization data.

The kernel copies the data from the table to the indicated part of the static 
storage.
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The linker separates out all initialized static storage definitions from all 
uninitialized static storage definitions. It locates the initialized static storage 
after the uninitialized static storage, so the initialization table is a direct 
image of the desired initialized variables in memory. Because the linker 
separates out the static storage definitions in this way, the location of 
variables in memory may differ from that expected. However, the order of 
the variables is maintained (but separated into the two areas). This is 
analogous to splitting a single mixed queue of badgers and foxes into two 
separate queues.

3.2.17 Offset to Data Pointers Initialization Table

The offset from the start of the module header to two tables (built by the 
linker) of structures for initializing pointer variables in static storage. The C 
language permits static storage pointer variables to be initialized with the 
addresses of other static storage locations, or of program functions.

As the absolute address of neither the program nor the static storage is 
known when the linker creates the module ("link time"), the linker cannot 
put the required absolute addresses for these variables into the "data 
initialization table" described above - it can only put the offset from the start 
of the module header (for program function pointers) or static storage (for 
static storage pointers). When the program is forked the kernel (which now 
knows the address of the program module and of the static storage it has just 
allocated) must adjust these initialized values in the pointer variables. The 
kernel locates the pointers that must be adjusted using the information in 
these two tables.

The first table contains information for initializing pointers to program 
functions. The kernel must add the address of the start of the module header 
to the offsets in this table to form the absolute pointer values. The second 
table contains information for initializing pointers to static storage locations. 
The kernel must add the address of the start of the static storage to the 
offsets in this table to form the absolute pointer values.

Each table consists of zero or more lists. Each list has the following format:

offset to use

Offset SI ze Description
$0000 word high (most significant) word of the offset to use
$0002 word number of entries in the list
$0004 words the list - each word is the low (least significant) word of the
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The table ends with a long word of zero - that is, when looking for the next 
list, the kernel reads the "high word" and "number of entries" values, 
stopping when the "number of entries" is zero. The second (static storage 
pointers) table follows immediately after the terminating long word for the 
first table.

For each entry in the list, the kernel reads the "low word" value and adds it 
to the common "high word" value (shifted left 16 bits) for the list, to form a 
long word offset into the static storage, from which it calculates an absolute 
address within the static storage. It then adds to the long word (pointer 
variable) pointed to by that address to either the start address of the module 
header (first table) or the start address of the static storage (second table).

Because the static storage pointer variables are "initialized static storage", 
they are included in the "data initialization table" described above. This has 
already initialized them with the offset (calculated by the linker) from either 
the start of the module or the start of the static storage to the item they are 
intended to point to. This second operation of adding the start address of the 
module header or of the static storage changes the offset into the required 
absolute address.

3.2.18 Module CRC

OS~9 uses a 24 bit Cyclical Redundancy Check value at the end of the 
module. The linker adds a byte of zero to the end of the module body before 
the CRC to ensure that the module is an even number of bytes long - the 
68000 family of processors requires that all instruction words be on an even 
address.

The CRC is generated by the linker and checked by the kernel using the 
"generate CRC" (F$CRC) system call. This call takes an initial accumulator, 
a byte count, and a pointer to the bytes over which to calculate the CRC. It 
returns the new accumulator value. Using this call a module's CRC can be 
generated piece by piece, or all at once. Initially the accumulator must be set 
to $FFFFFF. When generating a CRC the final value must be one's 
complemented before adding the three bytes to the module. The linker 
generates the CRC over the whole of the module, from the first byte of the 
header to the zero byte before the CRC. When checking a CRC, the three 
bytes of CRC must be included in the calculation. The result (for a good CRC) 
is $800FE3.

The kernel does not recheck the CRC of a module after it has been installed 
in the module directory. Therefore the contents of a module (but not the 
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header - see Header Parity above) can be altered. This is clearly necessary 
for data modules (which are pools of data shared between multiple 
programs). It is also used by the debugger programs for placing "hard" 
breakpoints in the modules being debugged.

The CRC calculation is not trivial - it requires a significant processor effort 
(although the time taken to perform the CRC calculation is not noticeable 
when loading a program, especially with the higher performance members of 
the 68000 family). Therefore highly time-critical applications should load all 
the modules they need before starting the application proper. This is good 
practice in any case, to reduce the possibility of disk usage affecting a 
time-critical application.

3.3 MODULES IN FILES
Modules may be contained in disk files, just like any other data. One or more 
modules may be contained in the same file, merged together sequentially in 
the file. A module - especially a program module - is normally held in a file 
of the same name as the module, to avoid confusion, but this is not a 
requirement. To the disk file manager, nothing distinguishes a file 
containing a module from any other file.

The load utility uses the "load" system call (F$Load), which allocates an 
area of memory equal to the size of the file, reads the file into memory, 
checks the modules in the file, and installs them in the module directory 
(using the F$ValMod system call). The module directory entry link count for 
the first (or only) module in the file is set to one (the others are set to zero).

The unlink utility uses the "unlink" system call (F$UnLink), which 
decrements the link count of a module. If this reduces the link count to zero, 
the module is removed from the module directoiy and its memory is returned 
to the free pool (unless it is a "sticky" module, in which case the module is 
removed from the module directory if its link count is reduced to -1).

The operating system "fork" call (F$Fork) attempts to find a module of the 
given name in the module directory. Failing that, it loads a file of the same 
name from the execution directory, and forks the first module in the file 
(which could have a different name). Note: if a module of the right name 
exists in the module directory, but it is not type "program" or language 
"object code", the kernel rejects the "fork" request with the error number 234 
(E_NEMOD), rather than trying to load a file of the given name.
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Exiting from a program causes the program module to be unlinked by the 
kernel. Therefore if it was implicitly loaded by a "fork" its link count is 
reduced to zero, and it is removed from the module directory (unless it is a 
sticky module).

3.3.1 Module Groups

OS-9 allocates memory in multiples of a minimum allocation unit (at present 
16 bytes). This is because the areas of free memory are connected together in 
a linked list, with each free memory area having a controlling structure at 
the start of the memory area. This structure needs a certain amount of 
memory, so an area of memory smaller than this could not be freed 
(de-allocated) - it could not be returned to the free memory list.

However, a file containing more than one module could contain modules 
whose length is not an integral multiple of this minimum block size, so that 
when the modules are loaded together in memory there may be memory 
blocks that contain the end of one module and the start of the next. 
Therefore, if the memory used by each such module could be freed 
separately, the free memory areas would no longer be integral multiples of 
the minimum block size, which cannot be permitted. To solve this problem, 
Microware devised the concept of the "module group".

Multiple modules loaded from one file constitute a "module group". The 
address of the first module (and therefore of the memory area allocated to 
the group) is used as a unique "group identifier" for the group. Each module 
in the group has this identifier in its module directory entry. All modules in 
the group remain in the module directory (even if they individually have a 
link count of zero) until the link count of all of them goes to zero.

That is, when - as a result of an "unlink" - the link count of a module goes to 
zero (or is already zero, and so would go to -1, for a sticky module), the 
kernel checks all entries in the module directory to see if there are any other 
members of this module group whose link count is not zero. If so, it does not 
remove the module from the module directoiy. Otherwise, it removes all 
modules in the group from the module directory, and frees the memory for 
the whole group.

Note that the kernel does not check whether the other modules in the group 
are sticky modules. Also, if a module (including a sticky module) is unlinked 
when its link count is already zero, but another module in the group has a 
non-zero link count, the link count of the first module remains zero.
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When a file of modules is loaded, the kernel sets the link count of the first 
module to one, and the others to zero. Therefore if no use is made of the 
modules (so their link counts are not increased), unlinking the first module 
will remove all modules in the group from the module directory.

Modules in ROM and the boot file form module groups of their own (a group 
for each separate ROM area in the memory lists), with a group identifier 
equal to the address of the ROM area containing the modules. During its 
coldstart the kernel scans the ROM (including the boot file in RAM, which 
the boot program pretends is ROM to the kernel) looking for modules, and 
puts them in the module directory. It sets the link count of the first module 
in each group to one. The kernel then links to itself, so setting its link count 
to one. This holds each group in the module directory. If each module in a 
group were unlinked so its link count reached zero, all the modules in the 
group would be removed from the module directory (as for any group), with 
potentially fatal consequences.

There is very little protection on module unlinking. Unlinking a module that 
is in use can have fatal consequences. The kernel does not permit the link 
count of an I/O module (file manager, device driver, or device descriptor) to 
be reduced to zero if the module is in use by any entry in the device table. 
Also, OS-9 version 2.4.3 (released in 1992) does not permit the link count of 
a module to be reduced to zero if it is the primary program module of any 
existing process, or an installed trap handler module of any existing process.

3.4 OS-9 MEMORY
The kernel provides dynamic allocation of memory. That is, memory is 
allocated as needed, and when it is no longer needed it is returned to a free 
pool.

OS-9 does not use memory management hardware to translate physical 
memory addresses to logical addresses as seen by a program. The program 
"sees" the memory at its actual physical address. Therefore a request for 
memory cannot know where the memory will be located. This means that all 
system memory usage must be register indirect - that is, relative to a 
processor internal register that has been loaded with the base address of the 
allocated memory area.

The same simple mechanism is used for allocating operating system memory 
and program memory, irrespective of whether the request is made from a 
program or from an operating system component.
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A program is initially allocated memory for its static storage variables and 
stack by the kernel when the program is forked. In addition, the program 
may dynamically allocate and release additional areas of memory of any size 
(rounded up to the minimum allocatable block size), up to a maximum of 32 
areas at any one time (including the process's static storage). This limit is 
imposed because the kernel must keep track of the memory areas owned by 
the program, so that the program memory can be automatically returned to 
the free pool on program exit (in case the program is abnormally terminated, 
or does not clean up before exiting).

If a newly allocated memory area is contiguous with an area already allocated 
to the process, the two areas are merged - only one entry in the table is used. 
If the newly allocated memory area fills a hole between two areas already 
allocated to the process, the three areas are merged into one table entry. This 
approach makes the maximum use of the 32 entries available in the table.

Because a memory management unit is not used to translate addresses, the 
kernel cannot combine separate physical memory areas to make a single 
logical memory area. Therefore problems due to memory fragmentation can 
occur, but in practice they are very rare, unless the application is very tight 
on memory, or is allocating very large blocks of memory.

The mfree utility used with the '-e' option displays the list of currently free 
memory areas.

3.4.1 Coloured Memory

Note: "coloured memory" and the "memory list" in the init configuration 
module were added to OS-9 in OS-9 version 2.3. Earlier versions of the 
operating system do not have these features.

The coloured memory concept was devised to solve two problems:

a) It is desirable to be able to control the order of allocation of 
different memory areas, as some memory areas may be 
slower in operation than others - that is, memory areas 
need to have a priority number.
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b) Some areas of memory may have special properties (for 
example, a memory area that is accessible to another 
processor on the same bus), so it is desirable to be able to 
specifically reference these different types of memory when 
allocating memory - that is, memory areas need to have a 
type number.

Microware call the different memory types "colours" - hence the term 
"coloured memory". Giving a special type of memory a unique colour number 
allows programs to allocate memory of that type without needing to know the 
absolute address of the memory. It also allows multiple programs to allocate 
separate areas of the special memory. Furthermore, if the system has 
memory management hardware which OS-9 is using for inter-task memory 
protection, a program cannot access memory which has not been allocated to 
it - coloured memory is a convenient way for a program to gain access to 
special memory in a way that is guaranteed to be portable to other OS-9 
systems. Examples of memory with special properties are:

• Graphics display memory.

• Battery-backed memory.

• Inter-processor communication memory.

The need for prioritizing the allocation of memory areas is quite common in 
bus-based computers. The memory on the processor board is usually much 
faster (for the processor to access) than memory on a separate memory board 
accessed over the bus.

The kernel builds its table of memory areas from the list of possible memory 
areas in the init configuration data module. During coldstart the kernel 
reads this list, and tests each area in the list, to see how much memory 
actually exists in that area. Each entry in the list specifies a start address for 
an area, an end address, a colour number, a priority, and attribute flags such 
as "read only", for ROM areas that are to be checked for modules on startup, 
and "user" for memory that can be allocated to user-state programs.

This allows the user to specify the colour, priority, and attributes of each 
memory area that may be in the system, and to "hide" memory from OS-9 
(by not including it in the list). There are two memory allocation system calls 
- general (or "uncoloured") and coloured. The uncoloured memoiy allocation 
system call is F$SRqMem, called by the C library function _srqmem(). The 
coloured memoiy allocation system call is F$SRqCMem, called by the C 
library function _srqcmem(). In addition, the system calls to load modules 
from a file (F$Load, C functions modloadO and modcloadO), and to create 
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a module in memory (F$DatMod, C functions _mkdata moduleO and 
make_module()), provide an extended format that specifies the memory 
colour to use (see the chapter on the OS-9 System Calls).

If there is more than one memory area of the same colour, memory with a 
high priority will be allocated before memory with a low priority. The 
uncoloured memory allocation system call allocates memory in priority order 
irrespective of colour, and will not allocate memory with a priority of zero. 
Such memory can only be allocated by a coloured memory allocation request, 
and so is protected from general system usage.

3.4.2 Memory Allocation

OS-9 uses a simple but effective algorithm for the allocation and 
de-allocation (freeing) of memory. The kernel maintains a separate linked 
list of free memory areas for each priority value of each colour of memory. 
Each free memory area has at its start the following structure:

Offset Size Description
$0000 long Address of next area in linked list.
$0004 long Address of previous area in linked list.
$0008 long Size of this area (in bytes).

To keep track of these linked lists, the kernel maintains a table - the 
memory colour node table - in which each entry is a structure, describing 
each memory area found at startup. The structure gives the memory area 
start and end addresses, the memory area colour number, allocation priority 
and attributes, and the total size of the free memory areas within this 
memory area. It also gives the addresses of the first and last free memory 
areas in this memory area.

The memory colour node structures in the table are linked together as a 
doubly linked list, ordered by allocation priority (highest priority area is first 
in the list).

Offset

$000

$004

$008

$00C

Size

long 

long 

long 

long

Description
Start address of memory area.
End address plus one of memory area.
Address of next (lower priority) memory colour node in list.
Address of previous (higher priority) memory colour node in 
list.
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Offset Size Description
$010 long Address of first free memory area within this memory area.
$014 long Address of last free memory area within this memory area.
$018 long Reserved.
$01C long Start address of memory area as seen by alternate bus master 

(local start address plus translation offset given in memory list 
in init module).

$020 long Sum of sizes of free memory areas in this memory area.
$024 word Attributes of this memory area (as given in the memory list in 

the init module).
$026 word Colour number.
$028 word Priority.

So, to allocate memoiy of a given colour the kernel walks through the linked 
list of colour node structures until it finds one of the correct colour that has 
sufficient free space. From the structure it takes the addresses of the first 
and last free memory areas within this memory area. It then walks through 
that linked list of free memory areas, checking the size of each entry until it 
finds an area big enough to satisfy the request (rounded up to the nearest 
minimum allocatable block size). If the area is bigger than the request, the 
kernel allocates the amount requested from the top of the area. The kernel 
reduces the size value in the area's information structure by the requested 
amount, but does not need to alter the linked list.

If there is no single free memory area in that linked list large enough to 
satisfy the request, the kernel returns to the table of colour node structures, 
and continues walking through it to find another area of the desired colour. 
This allocates memory of the desired colour, using high priority memory of 
that colour first.

An "uncoloured" memory allocation request is a request for memory of any 
colour, provided the memory priority code for the area is not zero. In this 
case the kernel walks the list of colour nodes without regard for the colour 
number in the descriptor, and so allocates the memoiy by priority only. The 
search stops if the colour node has a priority value of zero - such memory 
areas must not be allocated by an uncoloured memory request, and all 
further descriptors in the list will also have a priority of zero.

If the area is exactly the right size for the request, the kernel simply removes 
the area from the linked list.
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Note: memory for the primary data space of a process, allocated by the kernel 
by the F$Mem system call when forking the program, is a special case. It is 
allocated from the bottom of a memory area.

3.4.3 Inter-task Memory Protection

Memory management hardware (usually) performs two functions. It 
translates logical memory addresses generated by the processor into different 
physical addresses to the memory chips, and it also provides protection 
against illegal memory accesses by generating a "bus error" signal to the 
processor if a particular memory access is not permitted. An access may be 
forbidden either because the operating system has set the "memory map" for 
the currently executing program in the memory management hardware to 
exclude that area of memory, or because the program has attempted an 
operation which the memory map specifies is not permitted (such as writing 
to an area that has been marked as "read only" in the memory map).

By changing the memory map in the memory management hardware for 
each program that runs, the operating system can prevent programs 
accessing memory that has not been specifically allocated for their use. This 
prevents system corruptions or crashes due to incorrect memory accesses 
resulting from programming errors.

OS-9 does not use the address translation capability of memory management 
hardware, because OS-9 is capable of running without the need for such 
hardware. But OS-9 can use memory management hardware to provide 
inter-task (that is, "between programs") memory protection. This feature of 
OS-9 has been available as an option for use with any memory management 
hardware from OS-9 version 2.2 onwards, and is standard with OS-9/68030 
and OS-9/68040 (because these processors have a built-in memory 
management unit).

To avoid dependence on a particular memory management unit (MMU) chip, 
the kernel does not contain any functions to handle the MMU. Instead, these 
functions are provided in the System Security Module ssm. If ssm is not in 
ROM or the boot file (so it is not present during the kernel's coldstart), or is 
not in the list of "kernel customization modules" in the init configuration 
module, the kernel assumes that there is no MMU, and does not implement 
inter-task memory protection. Therefore to disable inter-task memory 
protection it is only necessary to leave ssm out of the boot file (and ensure it 
is not in ROM).
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When a process is first forked, its memory map contains only its program 
module and its primary data space (static storage and stack). If the process 
allocates additional memory, that memory is added to the memory map of 
the process. (The program is the body of instructions in the program module. 
The process is this "incarnation" of the program, with its own data space and 
other resources). Similarly, if the process subsequently de-allocates the 
memory, it is removed from the process's memory map.

OS-9 can allocate memory logically in multiples of its "process minimum 
allocatable block size" - at present, 16 bytes. However, most memory 
management units cannot manage memory in such small blocks. The 
memory maps within an MMU will be built in larger blocks - 4k bytes is a 
typical size. This block size is known to OS-9 as the "system minimum 
allocatable block size". Physically the kernel must allocate memory to a 
process in multiples of this block size. However, this could waste a lot of 
memory if the program were to make a number of small memory requests, 
and the kernel allocated a separate block for each request.

Therefore, if a program makes a small memory request the kernel allocates 
(as it must) a whole block. But it adds the remainder of the block to the 
linked list of free memory fragments belonging to the process. If the program 
makes another small memory request, the kernel will try to use memory 
from the free fragments of the already allocated blocks. Only if the program 
makes a memory request that cannot be satisfied from the allocated blocks 
does the kernel allocate a new block (or blocks).

The kernel uses the same mechanism for managing memory requests from 
operating system components - it keeps track of the free fragments in the 
blocks allocated to the operating system. This is particularly important in 
saving memory, because the kernel itself allocates many relatively small 
memory areas for use as tables and resource management structures.

Note that if inter-task memory protection is not being used (SSM is not 
present), the kernel still uses the same technique of allocating fragments of 
memory from a larger block. In this case the system minimum allocatable 
block size is set to 256 bytes.

When a process links to a module (or creates a data module in memory), the 
memory area of the module is added to the process's memory map, so the 
program can access the module (including the module header). The module 
attributes (write permit in the owner, group, and public fields) determine 
whether the process can write over the module. Data modules are therefore a 
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very useful mechanism for multiple programs to share a common area of 
memory.

If inter-task protection is used, then user state processes cannot access the 
registers or memory of input/output interface chips and circuits directly. This 
may be seen as a restriction when building a simple application that must 
perform some hardware control. Therefore the ssm adds system calls to the 
operating system that permit a program (provided it is a member of group 
zero) to add specific areas of memory to its memory map. These system calls 
(F$Permit and F$Protect) are described in the chapter on the OS-9 
System Calls.

The operating system (and system state processes and trap handlers) have 
unrestricted access to all memory. The ssm configures the MMU to suspend 
memory protections for processor accesses in supervisor state.

3.5 PROCESSES AND MULTI-TASKING
A process consists of a program that has been forked and has not exited (or 
been abnormally terminated), together with its data memory and a 
controlling memory structure used by the operating system to manage the 
process. This structure is known as a "process descriptor". Because OS-9 
strongly suggests that programs be re-entrant, a single program may have 
any number of "incarnations" at any one time, each using the same program 
module, but having separate data memory. Each such "incarnation" is a 
separate process. The kernel maintains a separate process descriptor for each 
process, which it uses to control the process, and to retain information about 
the process. The process descriptor is described in the chapter on the OS-9 
Internal Structure.

A process (or task) is created by a "fork" request to the operating system. 
Note that the word "task" is effectively synonymous with "process", and the 
two words are often used inter-changeably. The "fork" system call (F$Fork) 
returns a number, known as the process ID, that uniquely identifies the new 
process. The process ID is used for any system calls that communicate with 
or modify the behaviour of the process. Note that once a process has died its 
process ID may be assigned to a subsequently forked process, but no two 
processes will have the same ID at the same time. The process ID is always 
greater than 1 - zero is not used, and the System Process has the process ID 
of 1.

Under OS-9, each process has a "process priority" value associated with it. 
This value is assigned to the process when it is created ("forked"), and is 
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usually the same as the priority of the process that forked it (the "parent"). 
The priority of a process can be changed by the F$SPrior system call, and is 
the main mechanism for determining what share of the processor's time a 
process will get. The use of the process priority value, and the operation of 
the OS-9 process scheduler, are described in the chapter on Multi-tasking.

In a typical real time application, many processes work together to carry out 
the application. To do this they must exchange data, messages, and 
synchronization information. These functions - which are fully supported by 
OS-9 - are known as "inter-process communication". The OS-9 
inter-process communication facilities are described in the chpater on 
Inter-process Communication.

At any given time, a process will be in one of the following states:

Active 

Waiting 

Sleeping

Requesting processor time.

Waiting for a child process to die.

Waiting for a timed period, or an 
external (hardware) event, or an 
inter-process communication signal.

Waiting for event Waiting for an inter-process 
communication event.

Debugged Waiting for its parent (a debugger 
program) to permit it to continue 
execution.

Dead waiting to report its exit status to its 
parent.

Processor time is divided up between the currently active processes in time 
units known as "time slices". This is achieved by means of a hardware timer 
that produces processor interrupts at regular intervals known as "ticks". A 
time slice is one or more ticks. Most OS-9 systems use a 10ms tick, with two 
ticks per time slice. Two ticks per time slice are used rather than one, 
because the operating system cannot resolve time in units less than one tick. 
The kernel will assume that a part tick is a whole tick, so in effect a time 
slice of two ticks is actually between one and two ticks. A time slice of one 
tick could in reality be vanishingly small!

It is the execution of each process in turn for a short period of time that gives 
the appearance of programs executing concurrently. Therefore the length of 
a time slice is chosen to be short enough to give an acceptable appearance of 
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concurrency (for the application), yet not so short that the operating system 
is spending too much time in scheduling the processes. Only active processes 
receive processor time, so no processor time is wasted. The process scheduler 
of OS-9 (described in the chapter on Multi-tasking) ensures that the 
processor time is divided equally and evenly between all the active processes, 
unless the user or programmer requests otherwise - OS-9 offers several 
different mechanisms for the user or programmer to modify the behaviour of 
the process scheduler. In addition, the OS-9 scheduler has certain special 
features to ensure the response of high priority processes in real time 
applications, and to improve the throughput of the I/O system. These 
features are fully described in the chapter on Multi-tasking.

The procs utility shows all processes currently existing on the system, and 
displays additional information about their past performance and current 
state.

A process is started by a "fork" system call (F$Fork) from another process or 
an operating system component. It finishes when its program "exits" (F$Exit 
system call), or when the process encounters a fatal condition (a signal or 
processor exception it cannot handle). The use of signals is covered in the 
chapter on Inter-process Communication, while processor exceptions are 
described in the chapter on Exception Handling. The parent process can, in 
its "fork" request, pass a pointer to a memory area - known as a "parameter 
string" - which is copied to the new process's static storage. The parent can 
also specify the process priority of its new child, and request that it be 
allocated more static storage than the minimum specified in the program's 
module header.

A process can also transform itself into a new process, executing a different 
program. This is done by a "chain" system call (F$Chain). This system call is 
very similar to a fork, but the calling process is terminated and its process 
descriptor is used for the new process, which therefore has the same process 
ID as the original process.

Any number of processes may exist at any one time. The kernel keeps track 
of them by using the process descriptors. It keeps track of the process 
descriptors by means of the "process descriptor table", which is an array of 
addresses of process descriptors. The process ID of a process is an index into 
this table. If the entry in the table is zero, that process ID is not currently in 
use for any process. The process descriptor table starts off small, in order not 
to waste memory, but is extended by the kernel if it becomes full - the kernel 
allocates a new table of twice the size, and copies the old table into the new 
table.
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3.5.1 A Dead Process

Every process initially has a parent - the process that forked it. A process 
may be "disinherited" (lose its parent), usually because the parent dies before 
the child. It would be possible for a process to be disinherited without the 
parent dying, by reorganizing the relevant links between the process 
descriptors, but there is at present no system call to do this.

A process that dies and has not been disinherited returns its exit status to its 
parent. This can only occur when the parent makes a "wait" system call 
(F$Wait), to "wait for child to die". Therefore a "dead" process can remain 
hanging around indefinitely until its parent dies or executes a "wait" request. 
The kernel de-allocates all of the resources of a dead process (memory, I/O 
paths, program module), but retains the process descriptor until the parent 
dies or makes a "wait" request to receive the child's exit status.

This guarantees proper operation in a multi-tasking application, where it 
may be essential for the parent to know the exit status of the child. However, 
it can cause some confusion to a user, because the user expects that when he 
has killed a process, it has gone.

The shell provides two commands to manage the death of a process. The 
shell 'w' command will wait for any one child of the shell to die before 
returning to the prompt. The shell 'wait' command will wait for all children 
of that shell to die.

There is no system call to disinherit a child, allowing the parent to just forget 
about it. One way to achieve the same effect in a multi-tasking application is 
to fork up a process that then forks up the desired child and dies. This leaves 
the child disinherited (it does not become a child of the "grandparent").

3.5.2 System State Processes

Programs normally execute in 680x0 user state. The operating system 
components always execute in system state (the supervisor state of the 
processor). In user state, certain operations such as the masking of hardware 
interrupts are considered illegal by the processor. Also, a process may be 
scheduled out (stop executing, to allow another process to execute) at any 
point in the program, whereas scheduling is deferred while the processor is 
in supervisor state (permitting system calls to be indivisible).

Programs may wish to directly handle interrupts, or to prevent themselves 
being scheduled out during critical code fragments. It is a relatively simple 
matter to add a system call (in a device driver, or a kernel customization 
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module) to mask and unmask interrupts, and facilities exist in the operating 
system to modify or pre-empt the normal multi-tasking scheduling 
mechanism.

Another method, however, is to run the process in system state. This can be 
achieved by setting the "supervisor state" flag in the program module 
attributes byte in the module header. When the program is forked, the 
operating system executes the process in system state, and it has all the 
privileges of the operating system, such as deferred scheduling.

However, it also has all the responsibilities of the operating system. A 
thorough understanding of the operation of the operating system is 
recommended before writing system state programs. For example, many of 
the system calls (especially the I/O calls) operate somewhat differently if the 
call is made from system state than if it is made in user state.
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