
USING OS-9

CHAPTER 2

USING OS-9

2.1 BOOTING OS-9
g In most computers the main memory (Random Access Memory -

RAM) loses its data when the power is turned off. At power-on or
HF reset the CPU cannot assume that it has any valid programs in

RAM. Therefore every computer has a small amount of ROM
(Read Only Memory) - memory that cannot be written, but does not lose its
contents on power-off.

The ROM contains a "bootstrap" program that (in general) reads a known
part of a disk to load the operating system into RAM. The bootstrap program
then jumps to the coldstart routine of the operating system, which does the
rest of the startup procedure. This operation is known as "bootstrapping",
from the analogy of someone lifting themselves up by their own bootlaces -
how can the operating system start up the computer if the operating system
itself is not in memory?

The term "bootstrapping" is usually abbreviated to "booting", and "bootstrap
program" to "boot program".

The boot program is not itself part of the operating system, nor can it use
any of the facilities of the operating system. It is a self-contained program
whose job is to load the operating system into the computer's memory.

Because the boot program must initialize and use the hardware of the
particular computer it is running on, it is not provided as a compiled
program by Microware. Instead, Microware gives the implementor example
source code which the implementor must adapt. In consequence, the booting

17

USING OS-9

procedure is not the same on all OS-9 computers, so the description here is
necessarily a bit vague.

Microware supplies the implementor with a simple debugger program to go
with the boot program, known as the ROM-based debugger. This, too, is a
stand-alone program that does not use any of the operating system facilities.
The implementor has the option of including this debugger with the boot
program. Also, from OS-9 version 2.4, Microware supplies the implementor
with a much improved debugger, known as ROMbug. The implementor has
the option of including this with the boot program, in place of the old
ROM-based debugger.

If one of these debuggers is included with the boot ROM, then normally the
system will enter the debugger on power-on or reset. The user must then
enter the "go" command:

debug: g[CR]
to continue with the booting procedure. (Note: [CR] means press the
RETURN or ENTER key). On some systems, the implementor will have
written the boot program to bypass entering the debugger if a switch or link
on the CPU board is appropriately configured.

Prior to OS-9 version 2.4, the example source code provided by Microware
could only boot from one disk drive, or (if assembled differently) search for
the OS-9 kernel in ROM. As most systems want to boot from hard disk
normally, but from floppy disk when needed, many implementors have
modified the example source code to allow booting from multiple drives.
Because this is not in the Microware-supplied code, it varies from one
manufacturer to another. Some implementors also incorporated the search
for the kernel in ROM. This type of boot program will typically search for the
kernel in ROM first. If the kernel is found, the boot program jumps to the
coldstart routine of the kernel in ROM. Otherwise, the boot program
attempts to boot from each disk drive it knows about in turn, until it is
successful with one of them.

From OS-9 version 2.4, Microware provides the implementor with an
additional set of example source code known as "CBOOT" (because it is
written in C, rather than assembly language). This has the capability to boot
from multiple drives, including tape drives, and even across a network.

So, a typical boot-up sequence would be:

• Power-on or hit the reset button! A "booting" message may be
displayed on the terminal.

18

USING OS-9

The ROM-based System Debugger may be present (giving a display of
the processor's internal registers):

debug: g[CR]
You may be prompted to select which drive you want to boot from.

The boot program will now find the OS-9 kernel in ROM, or read the
operating system boot file from the (selected) drive. If you had
"enabled" the ROM-based debugger with the e command, the boot
program will re-enter the debugger. The "go" command will continue
the boot. This allows the implementor to check that the boot has
worked correctly. The boot program then locates the kernel module,
and jumps into its coldstart routine.

The kernel searches the ROM and the boot file (if any) for modules,
and enters them in the module directory. If you had enabled the
ROM-based debugger, the kernel will re-enter the debugger. This
allows the implementor to set breakpoints in any of the modules in
the boot file - the kernel has already checked their CRCs, and will
not check them again. The g command will continue the OS-9
coldstart.

The kernel links to the configuration module init (to get the
user-configurable initialization parameters), initializes all its tables
and other memory structures, and opens the default input and output
paths (usually the terminal '/term') and default directories (usually
the hard disk root directory). It then starts (forks up) the program
whose name is given in the init module - the initial program to fork.
This program is usually called sysgo.

The last operation the kernel does in its coldstart routine is to fork
the "system process". This is a program whose code is contained
within the kernel module. Its job is to manage the wakeup of
programs that are in timed sleep, or have set alarms. This system
process is not visible to the user.

Having forked the system process, the kernel coldstart ends. The
operating system executes no further code unless called by a program
or an interrupt.

The sysgo program provided by Microware first changes its execution
directory to 'CMDS' (on the drive whose name is given in the init
module). It then forks up the shell program - the OS-9 command
line interpreter - with its input directed to come from a file called
'startup', rather than from the keyboard. When that shell has
finished processing the instructions in 'startup', sysgo enters a loop,

19

USING OS-9

forking a shell, then waiting for it to die. Thus if the user terminates
the shell program, sysgo will start up another one.

• The 'startup' file contains shell command lines to initialize the
system. For example, it may call the tsmon utility to log in other
terminals.

• If the computer hardware does not have a battery-backed
calendar/clock chip, 'startup' will have a line to call the setime
utility, and you will be prompted for the date and time:

yy/mm/dd hh:mm:ss [arti/pm]
Time: 92/08/15/09/30

• Once shell has processed the 'startup' file, sysgo forks up a new shell,
which presents you with its default prompt:

$
• This ends the startup procedure.

Because the incarnation of shell that processes the 'startup' file is not the
same incarnation as the one sysgo subsequently forks to give you the
command line prompt, "private" changes made in instructions in the 'startup'
file are not passed on to the shell that gives you the prompt. Examples of
changes that are "private" to the executing program are changes to the
default directories (chx and chd), and changes to the shell prompt string
(-p=...).

Some users will modify the 'startup' file so that its last instruction is to login
the system console (terminal). In this case the shell processing the 'startup'
file will never finish (because the tsmon program used to log in the system
console never finishes). The 'ex' built-in command of the shell can be used
to transform the shell into an incarnation of tsmon as the last act of the
'startup' file, to avoid an unnecessary incarnation of shell. If tsmon has been
called, you must press [CR], which will give you the login prompt, rather
than the shell prompt.

The shell program "inherits" the current directories of the sysgo program .
After bootup, the "current data directory" is the root directory of the "initial
device", as specified in the init module (unless the 'startup' file calls tsmon
to log in the system console, in which case the login procedure may change
the current data and execution directories). Typical device names are:

/dO floppy disk drive 0

/h0 hard disk

20

USING OS-9

/dd "default device" - usually the hard disk

and the "current execution directory" is the 'CMDS' directory within that root
directory:

/dO/CMDS floppy disk drive 0

/hO/CMDS hard disk

/dd/CMDS "default device"

Notice that in OS-9 all device names start with a character. A typical
system might use the following device names:

/dO floppy disk drive 0

/dl floppy disk drive 1

/fhO hard disk without format protection

/hO hard disk drive

/hOfmt same as 7fhO'

/mtO tape drive

/nil "null" device - data sent here is lost

/p parallel port (Centronics) configured for use with a printer

/pl second serial port configured for use with a printer

/p2 third serial port configured for use with a printer

/rO RAM disk

/term first serial port (system console)

/tl second serial port

/t2 third serial port

/uO floppy disk drive 0 configured for Microware Universal form
if 7d0' is some other format

• Figure 2 - Typical device names

2.2 SHELL - THE COMMAND LINE INTERPRETER
shell is a program - it is not built into the operating system. No programs
or utilities are built into the operating system itself, shell reads in a line
(typically from the keyboard), and processes it. The line may contain:

21

USING OS-9

• the name of a program to fork, with parameters:
$ dir CMDS -e
• the name of a text file containing shell command lines:
$ nty_proc_f ile
• shell "built-in" commands:
$ chd /dd/USER

shell accepts several special characters to modify its default behaviour - see
figure 3.

Many shells may be running concurrently, for the same or different users.
Each user has at least one shell. Because shell is just a program, a user can
run a different command line interpreter, in place of shell (for example,
mshell, the advanced command line interpreter from Microware). Also,
shell may be called (forked) from within another program. For example,
both basic and debug have a '$' command to fork a shell, and the same can
be achieved from umacs with the key sequence [*X][C] ([~X] means "hold
[CTRL] and press [X]").

shell implements "wild carding" on file names, using any combination of the
characters (for "any number of characters or none") and '?' (for "any single
character"), shell actually performs wild card comparison of names using the
"compare names" system call (F$CmpNam).

$ dir *.c
will display the names of all files that end in '.c'.

$ list fred?.c
will list all files whose names start with 'fred1, followed by any single
character, followed by '.c'.

Be aware that it is the shell that reads the current data directory to resolve
wild-carded file names, not the program that is being forked. The program is
passed the expanded file names as parameters just as if you had typed them
in full.

Command line parameters are separated by spaces. If a parameter is to
contain spaces or shell special characters, it must be enclosed in single or
double quotes. For example:

$ echo *
will print the names of all files in the current data directory, while:

$ echo "* ”
will print a single character.

22

USING OS-9

The present OS-9 shell does not have UNIX-like parameter substitution or
flow control "language" features - it is a simple command line interpreter.
Microware also sells a much more sophisticated command line interpreter -
mshell.

• Figure 3 - shell special characters

f separates commands to execute sequentially:
$ dir -e ; mdir

&

!

separates commands to run concurrently - shell does not
wait for the child to finish before executing the next part of
the command, or giving a new prompt if the is at the end
of the line:

$ list fred & dir
$ tsmon /tl &

"pipes" the output of the first program into the input of the
second program:

$ echo fred ! list -z
* sets the priority of the program being forked:

$ dir A200
sets the size of the data space of the program, in kilobytes.

This modifier is rarely used - utilities dynamically allocate
buffer memory themselves:

$ basic #20k

0 forks up a separate shell to execute the commands between
the parentheses. The separate shell can change its private
parameters (such as current data directory) without affecting
those of the parent shell:

$ (chd /dd/SYS ; list errmsg)

redirects the standard input path of a program being forked
to any device or file:

$ list -z <file_list

redirects the standard output path of a program being forked:
$ list fred >/p

redirects the standard error path of a program being forked:
$ dsave /dl »err_log

the redirection modifiers can be combined to redirect any two
or all of the standard paths to another device or file:

$ r68 fred.a -ql »>/p
$ shell <»>/tl

23

USING OS-9

2.3 SHELL BUILT-IN COMMANDS

Certain desirable commands cannot be separate utility programs, as they
change private properties of this "incarnation" of shell, or operate on
"children" of the shell (programs forked by the shell). Programs forked up
by shell receive a copy of its environment, but if they change their own
environment this has no effect on the environment of the parent shell.

chd change shell's data directory:
$ chd /dd/USER

chx change shell's execution directory:
$ chx /dd/USER/ETC/CMDS

kill kill another process (by process ID):
$ kill 7

w wait for one (any) child of the shell to die:
$ w

wait wait for all children of the shell to die:
$ wait

setenv set (or change) an environment variable:
$ setenv TERM vtlOO

unsetenv forget an environment variable:
$ unsetenv PATH

setpr set execution priority of a process:
$ setpr 6 200

logout exit this shell (same as "end-of-file" key):
$ logout

profile execute the commands in a text file (does not fork
another shell to process the text file - contrast just
typing the file name):

$ profile fred

ex "chain" rather than "fork" another program - the
shell effectively dies after forking the program:

$ ex tsmon /term

-e enable full error message printing

-ne print only error numbers

-1

-nl

only allow exit via "logout", not "end-of-file" key

allow exit via "logout" or "end-of-file" key

-P enable display of prompt

24

USING OS-9

-p=<str> set new prompt string:
$ -p=“George: “

-np

-t

disable display of prompt

echo input lines - useful for procedure files

-nt do not echo input lines

-v display directory searching

-nv do not display directory searching

-x abort on error (shell program terminates) - the
default if processing a procedure file

-nx do not abort on error - the default if taking input
from the keyboard (SCF or GFM device).

2.4 ENVIRONMENT VARIABLES
When a process is forked by the shell (or by the os9exec() C library
function), it is passed a parameter string composed of two parts: the
command line parameters, and the environment variables. Each
environment variable is a character string with an associated name. For
example, the environment variable TERM may be assigned the string vtlOO.
The shell built-in commands setenv and unsetenv are used to create and
delete environment variables local to that shell. Any name can be invented,
and assigned any character string. When the shell forks a process, it passes a
copy of all the environment variable names and strings that it currently has.
If that process then forks another process itself, it will pass on a copy of the
same environment variables (provided it uses the os9exec() C library
function to do the fork), unless it has changed its copy of the environment
variables.

It is important to bear in mind that the environment variables do not exist
globally in the system. Each process has, in its static storage memory, a copy
of the environment variables passed to it when it was forked. The process
can modify, delete, or add to them, and pass them on to any process it forks.
This means that different processes can have the same environment variable
name with a different character string.

The environment variables are effectively implicit command line parameters.
They save you the trouble of typing in many additional parameters with each
command line. A program can look through the list of environment variables
it has been passed, to see if there are any names it recognizes. For example,

25

USING OS-9

the umacs screen editor looks for the environment variable TERM to tell it
which type of terminal is being used. The shell looks for the environment
variable PATH to tell it what directories to search when forking a program,
in addition to the current execution directory (which it searches first), and
the environment variable HOME to tell it which directory to change to if the
chd command is used without a pathlist.

The printenv utility is used to list all the currently defined environment
variables of the process that forks it (usually your command line shell).

2.5 PATHLISTS
All I/O devices and files are accessed by means of pathlists. A pathlist is a
text string identifying the device or file.

If the pathlist starts with a the first name element is a device name:

/P
/term

/dd

otherwise the pathlist is relative to the current data directory or current
execution directory (depending on whether the file is opened with "execute
mode", which is a function of the program using the pathlist). For example,
the load utility opens the file with the execute mode (unless the d' option is
used), and so the pathlist is relative to the current execution directory:

$ load mdir

whereas the list utility opens the file without the execute mode, so the
pathlist is relative to the current data directory:

$ list myfile
Note: a device name is the name of the device descriptor module describing
the device.

The disk file manager of OS-9 ("RBF") supports hierarchical directories.
Therefore a pathlist may have any number of name elements. Name
elements are separated by '/':

/dd/CMDS/BOOTOBJS/hOfmt
MYDIR/myfile

26

USING OS-9

Letter case is not significant in device names (or any module names), or in
RBF pathlists. By convention, directories are created with upper case names,
to be easily visible in a directory listing:

$ makdir NEWDIR
$ copy /dd/startup newdir/startup

Each directory contains an entry '.', referring to itself, and referring to its
parent. For example:

$ dir ..
displays a directory listing of the directory one level above this - the parent
directory of the current data directory.

$ dir ../BROTHER

displays a directory listing of the directory 'BROTHER', which is a directory
with the same parent as the current data directory - a "sibling" of the
current directory.

OS-9 also permits multiple '.' to go further up the hierarchy. Thus '....' is
equivalent to (both refer to three levels up). The '..' entry of the root
directory refers to itself (it is identical to the '.' entry). If your pathlist has
more '.' than there are levels to go up the directory hierarchy, this peculiarity
of the root directory avoids any problems - the extra '.' are effectively
discarded, as going to the parent of the root directory returns to the root
directory.

Note: anything in the pathlist beyond the initial device name is a function of
the file manager, not the kernel. For example, the '.' convention described
above is a function of the disk file manager RBF.

2.6 CURRENT DIRECTORIES
There are separate current data and execution directories for each process
(running program).

If a pathlist starts with a '/', the first pathlist name element is a device name,
and the "current directory" feature is not invoked:

$ list /hO/SYS/password
The "current directory" feature is invoked if a pathlist does not start with a
'/'. The current execution directory is used if the path is opened with the
"execute" mode, otherwise the current data directory is used. For example,
the dir utility opens the target directory without the execute mode (unless

27

USING OS-9

the '-x' option is used), so a pathlist that does not start with 7 is relative to
the current data directory:

$ dir USER/ROBERT
$ dir -x BOOTOBJS

The load utility opens the file to load with the execute mode (unless the d'
option is used), so the pathlist is relative to the current execution directory:

$ load BOOTOBJS/hOfmt
$ load -d OBJS/myprog

A child process inherits the current directories from the parent process. It
can change them, but this does not affect the current directories of the
parent (or of any other process). In the above examples, dir and load
inherited the current directories of the shell that forked them.

The shell's current directories may be changed using the built-in commands
chx and chd:

$ chx /hO/CMDS
$ Chd .../PROJECT/SOURCE

2.7 INPUT LINE EDITING
Line editing is a function of the I/O subsystem handling the input device -
the file manager and device driver - not a function of shell (although
mshell does its own line editing). For terminals, the "Sequential Character
File manager" (SCF) is normally used. The same line editing is therefore
available for most keyboard line entry.

SCF uses a line buffer for the editing, passing the finished line (when [CR] is
pressed) to the calling program. The buffer is 512 bytes, so this is the
maximum length of a line typed in, including the [CR], A separate buffer is
allocated for each path opened, so line input on one path does not affect
another path.

The editing keys are all customizable (using the tmode and xmode utilities).
Setting a key code to zero suspends the feature. The usual key assignments
are as follows ([’X] means hold [CTRL] and press the [X] key):

Key

[BS] or [BkSp]

[*X]

[*D]

Action

delete one character left

delete the whole line

reprint the whole line (useful on teletypes!)

28

USING OS-9

Key

[*A]

[ESC]

Action

redisplay line buffer from cursor to end-of-line
character (useful for repeating a command,
perhaps with editing)

end-of-file if the first character on the line

2.8 OTHER SPECIAL KEYS
Certain other input keys have special effects. These are a function of the
device driver. As with the line editing keys, the utilities xmode and tmode
can be used to change the special keys:

Key

[’E]

[*C]

Action

abort - kill the last process to use the terminal

interrupt - normally kills the last process to use
the terminal

[*E] causes the device driver to send a "quit" signal to the last process that
used the input device. [*C] causes the device driver to send an "interrupt"
signal to the last process that used the input device. As with other signals, if
the process has not installed a signal handler function (and most utilities do
not), the kernel will terminate the process.

shell does install a signal handler, and so receives and handles the signals. If
shell was the last process to use the terminal, [”E] causes it to kill the last
child forked (by sending it the "quit" signal) and return to the prompt. [*C]
causes it to return to the prompt without killing the child, effectively putting
the child into the "background". So if the user enters a command line, and
the program has done no input or output to the terminal, the user can decide
to put the program into the "background" by pressing [~C], as if the
command line had been terminated by the character:

$ pr fred >/p
rc]

$
If a process is waiting for an I/O operation to complete when it is killed, the
I/O operation is not corrupted - the operating system completes the I/O
operation before terminating the process. However, if the I/O operation is a
read or write of a terminal or printer (through the SCF file manager), the
operation is aborted, as SCF does not support a filing system that could be
corrupted. Note that if a write operation is aborted in this way, any

29

USING OS-9

characters that have already been written to the device driver's buffer, but
are still waiting to be sent to the device, will be transmitted despite the
abort, unless the device was about to be shut down in any case (no paths are
open on the device). Therefore, unless special care is taken, it is difficult to
know whether such characters will be transmitted after an abort (but this is
not usually important).

The third special key causes the device driver to request SCF to pause
output at the end of the next line - any other key restarts the output:

Key Action

[*W] pause output at end-of-line

2.9 MULTIPLE PROCESSES ACCESSING THE TERMINAL
SCF queues concurrent accesses to the terminal, whether for input or
output. For example, if, when shell is waiting for a line of input, a
background process attempts to write to the screen (perhaps to display an
error message), SCF puts it to sleep. The error message will come out when
the shell's request is finished - an input line has been typed - and the
background process is woken up by the operating system.

In particular, the shell built-in command 'w' causes shell to wait for a child
process to die. This releases the terminal (because the shell is waiting for the
process to die, rather than requesting keyboard input), and allows the
background process to print its error message and die.

2.10 A TYPICAL DIRECTORY STRUCTURE
OS-9 is very customizable, and has been implemented on a wide range of
hardware, so many things will vary from system to system. This includes the
directory arrangement on the main disk drive. However, most implementors
try to retain the example arrangement from Microware, the main elements of
which are described here.

Most OS-9 systems will have a primary mass storage device, either a floppy
disk or a hard disk. The first floppy disk drive is usually known as 7d0', while
a hard disk is usually known as 7h0'.

An "alias" (in the form of an additional device descriptor) is usually provided
for each of the devices, so that each may be known as '/dd' (default device).
Only one dd device descriptor can be loaded at any one time. Usually this

30

USING OS-9

will be the hard disk drive if the system has one, but some configurations use
a "RAM disk" as the default device.

Many programs use '/dd' as the route to definitions files and other
program-specific data. Therefore you should load a "dd" appropriate to the
device you want used for such purposes. For example, a typical command to
load the dd device descriptor for the hard disk is:

$ load BOOTOBJS/dd.hO
Such a load command can be placed in the 'startup' file, although some
implementors name 7dd' as the initial device in the init module. In such
configurations the dd module must be in the boot file, or ROM, so to change
the default device a new boot file or ROM must be made (or a dd device
descriptor with a higher revision number can be loaded).

The root directory of this device will usually contain at least the following
directories:

CMDS

DEFS

LIB

SYS

SYSMODS

IO

utilities execution directory

header (definitions) source files for assembly
language and C programs

library files (for use by the linker)

system management text files

system customization source files

device descriptor (and device driver) source files

and 'CMDS' will also normally contain the directory 'BOOTOBJS'. This
directory contains all the OS-9 modules used to make up the operating
system, which allows you to create customized boot files, plus any operating
system modules not in the boot file, for loading as required.

• Figure 4 - A typical directory structure

31

USING OS-9

32

	CHAPTER 2
USING OS-9
	2.1 BOOTING OS-9
	2.2 SHELL - THE COMMAND LINE INTERPRETER
	2.3 SHELL BUILT-IN COMMANDS
	2.4 ENVIRONMENT VARIABLES
	2.5 PATHLISTS
	2.6 CURRENT DIRECTORIES
	2.7 INPUT LINE EDITING
	2.8 OTHER SPECIAL KEYS
	2.9 MULTIPLE PROCESSES ACCESSING THE TERMINAL
	2.10 A TYPICAL DIRECTORY STRUCTURE

