
MICROWARE C AND ASSEMBLY LANGUAGE

CHAPTER 15

MICROWARE C AND ASSEMBLY LANGUAGE

Programming in C is usually far more productive than 
programming in assembly language, and produces code that is 
more readable, portable, and maintainable. However, assembly 
language is still used where speed and memory efficiency are 

important. For these reasons, most of OS-9 itself is written in assembly 
language, (whereas for portability OS-9000 is written in C). C programs
wishing to make calls to the OS-9 operating system must use interface 
functions written in assembly language.

This section describes the interface between C and assembly language under 
OS-9, and shows how operating system components such as file managers 
and device drivers can be written in C.

15.1 MICRO WARE C
The latest version of the Microware C compiler (version 3.2, supplied with 
OS-9 version 2.4) is an up-to-date and complete implementation of the C 
language, including bit fields, enumerated constants, structure assignment, 
and structure return. There are no limits on the length of symbol names, and 
the same element name may be used in different structure definitions. 
However, the additional features from the ANSI C standard are not 
incorporated. Microware has announced that an ANSI standard C compiler is 
in development - at the time of writing its release is imminent.

Microware C conforms to the standard laid down by Kernighan and Ritchie 
in their definitive book "The C Programming Language". A complete set of 
library functions are provided, giving both UNIX compatibility (as far as 
possible), and access to OS-9 specific functions. Both "buffered file" functions 
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(such as printfO and freadO), and low level path I/O functions (such as 
open() and read()) are provided.

15.2 CIO AND MATH TRAP HANDLERS
The most commonly used I/O library functions are also provided in the cio 
trap handler. This saves on memory, disk space, and time loading programs 
from disk by making the program much smaller - the program makes trap 
calls to the I/O functions in cio, rather than having the code for the 
functions in the program module itself.

The decision whether to use cio, or to use library functions included in the 
program, is taken at compile (link) time. The '—i' option to the cc executive 
requests that library functions (from 'LIB/cio.l') be used that simply make 
trap calls to the cio trap handler. If this option is omitted, the program is 
linked with library functions that perform the I/O functions themselves 
(from 'LIB/clibn.l' or 'LIB/clib.l'). The functions will execute slightly faster 
than calling the trap handler, but the program will be significantly larger.

Similarly, math functions can be included in the program, or can make trap 
calls to the math trap handler module. If the '-x' option is specified to cc, 
the trap handler technique is used, by linking to the 'LIB/clib.l' library and 
generating "in-line" trap instructions in the program. Otherwise the 
'LIB/math.l' library is used. In addition, if the target processor is indicated as 
a 68020/030/040 (using the ’—k' option of cc), the compiler will use the 
additional integer arithmetic instructions of these members of the 68000 
family, and if the '-k2F' option is used to indicate that the 68881/68882 
floating point coprocessor is available (or the processor is a 68040), the 
compiler will use in-line floating point instructions.

15.3 THE REMOTE DIRECTIVE
All OS-9 programs use register indirect indexing (relative to the a6 register) 
to access static storage memory. However, the 68000 and 68010 are limited to 
signed 16—bit constant offset indexing with address registers. The linker 
automatically offsets data space accesses by 32k bytes, allowing 64k bytes of 
storage to be accessed using constant offset indexing. To access more static 
storage than this the compiler must use a different form of addressing. The 
OS-9 C compiler offers three options to do this.
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The first approach uses the remote directive, which is an additional keyword 
in the Microware C language, prefixing static storage definitions and 
declarations. For example:

remote static 1nt x:

This declares that x is likely to lie outside of the 64k limit, and therefore an 
alternative addressing mode must be used. The C compiler generates two 
instructions for each access to such variables, as it must load a data register 
with the long word offset, and then use register indirect addressing with 
index. The linker places all remote variables after all ordinary static storage, 
so it is usually sufficient to define only large arrays as remote. The remote 
keyword is specific to the OS-9 C compiler, and so its use is not portable.

The second approach is to use the option '-kOL' with the cc executive. This 
instructs the compiler to generate two instructions for each static storage 
access, as if all static variables had been defined as remote. This makes 
programs more portable (and simplifies the porting of existing programs to 
OS-9), but also makes the programs slower and larger than necessary.

The third approach is only available with the 68020/030/040 version of the C 
compiler. The '-k2L' option allows the user to specify that long word 
constant offset indexing be used for data space accesses - this is an 
additional addressing mode in the 68020/030/040. This causes all static 
storage references to use long word offsets, allowing the full use of the 32-bit 
addressing capability of the 68000 family. However, it does mean that 
accesses to the first 64k bytes of the program's static storage are using 32-bit 
offsets when 16-bit offsets would do, making the program longer and slower.

As most programs do not need more than 64k bytes of static storage (large 
buffers are instead dynamically allocated, and addressed via pointers), these 
techniques are generally not required.

The same problem applies to function calls in programs larger than 32k 
bytes, as the 68000 bsr instruction is limited to a signed 16-bit offset. The 
linker therefore uses a jump table in the data space for all references that 
exceed +/-32k bytes; it patches over the bsr instruction generated by the 
compiler with a jsr relative to the data space. The 68020/030/040 version of 
the C compiler allows the user instead to specify (using the '-k2CL' option) 
that long word offsets be used with the bsr instruction, as this is available on 
the 68020/030/040 processors. This may be advantageous for very large 
programs, but bear in mind that all function calls will then use long word 
offsets, creating a larger and perhaps slower program.
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Similarly, the '-kOCL' option causes the C compiler to generate two 
instructions for every function call instead of a simple bsr instruction. This 
approach is compatible with the 68000 and 68010, which do not support long 
word bsr offsets.

Note that if any of the cc '-k2' options are used, causing the compiler to 
generate code using the additional instructions and addressing modes 
available on the 68020/030/040, the program cannot be run on a 68000 or 
68010.

15.4 PROGRAM STARTUP

The C programmer expects execution to start with his main() function. 
However, because the kernel passes parameters to a newly forked program in 
the processor registers, it is necessary for an assembly language "core" to be 
called first, which then calls main(). This "core" is in the file 
'C/SOURCE/cstart.a'. It is provided already assembled in the file 
'LIB/cstart.r'. The cc executive automatically makes this the first Relocatable 
Object File (ROF) in the linker command line it generates, 'cstart.r' also is 
the only file in a C program that has a "non-null" ("root") psect directive. 
The psect assembler directive specifies the output module type, attributes, 
and revision number. The linker permits only one root psect, so files 
produced by the C compiler have null psect directives.

If cc is used to generate the linker command line, 'cstart.r' is automatically 
included. However, if you create your own linker command line you must 
manually include 'cstart.r' as the first ROF in the command line. Try using 
the '-bp' option of the cc executive to display the command lines that cc 
generates.

15.5 C WITH ASSEMBLY LANGUAGE
The problems in interfacing C to assembly language are to do with parameter 
passing and register usage. Provided that the C compiler's parameter passing 
and register usage schemes are understood, assembly language functions can 
be written that are called from C functions, or that call C functions.

The C compiler uses a simple and consistent parameter passing mechanism. 
The first two long words of parameters are passed to a function in the dO and 
dl registers. If the first parameter is a double precision floating point 
number it is passed in dO and dl. If the first parameter is not a double, but 
the second is, dl is not used. The remaining parameters are on the stack 
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(above the return address). If a function returns a value, the returned value 
is in dO (and dl if the returned value is a double). If the returned value is a 
structure, its address is returned in dO - the structure itself is built in static 
storage private to the called function (as described below).

The only register usage convention that the assembly language programmer 
needs to know (and can rely on) is that the address of the program static 
storage is always held in the aG register.

Because the compiler's use of registers cannot be relied on (future releases of 
the compiler may behave differently), you should never embed assembly 
language within C functions. Instead, always use separate assembly language 
subroutines, called as functions from the C code. For the same reason, the 
assembly language subroutine should always preserve all of the processor 
registers other than ccr, dO, and dl. Indeed, even dO and dl should be 
preserved if they are not used to pass a parameter or return a value.

To increase the portability of your C code, the assembly language functions 
should be placed in a separate source file. Only this file will need 
modification if your C source code is ported to a different processor or 
compiler. Note that if an assembly language symbol is to be used from a 
different source file, it must be made public. The Microware assembler 
makes a symbol public if its name is immediately followed by a colon in the 
line defining the symbol.

15.6 REGISTER VARIABLES
The C language provides for automatic variables (temporary variables within 
functions) and parameters passed to functions to be declared as register. 
The C compiler will try to place these variables in processor registers, rather 
than in memory allocated from the stack. Because such variables do not have 
to be read from memory when their value is required, or written to memory 
when their value is changed, code fragments using such variables are much 
smaller and faster. This is particularly important if the variable is used 
frequently - for example, a pointer to char used for parsing a string, or an 
int used as the controlling variable in a for loop.

The C language specification states that the compiler will assign register 
variables to processor registers in the order in which the definitions appear. 
Once all the available processor registers have been used, further register 
definitions will create ordinary automatic variables on the stack. Therefore 
the order in which the register variables are defined is very important, 
especially if the code is intended to be portable - another processor may have 
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fewer registers, and another compiler may make fewer registers available for 
register variables.

The Microware C compiler makes four data registers (d4-d7) and three 
address registers (a2-a4) available for register variables. The data registers 
are used for register variables of types char, short, int, and long (and the 
unsigned equivalents). The address registers are used for pointers of any 
type. If the '-k2F' option of the cc executive has been used to indicate that a 
floating point unit is available, the C compiler makes six FPU registers 
(fp2-fp7) available for register variables of type double or float.

15.7 CODING FOR SPEED
It is a widely stated axiom that a program spends most of its time executing 
only a very small percentage of its code in a frequently repeating loop. By 
carefully identifying such code fragments and making judicious use of 
register variables within them, the programmer can make his program run 
significantly faster.

The following example of a function to copy a string executes very much 
faster because register variables have been used. Try compiling this function 
with the '-a' option of the cc executive, and study the output with and 
without the use of the register keyword. Using the '-c' option as well will 
keep the C source code as comments in the assembly language file. Notice 
that the Microware C compiler makes use of special features of the 68000 
instruction set, such as the post-increment addressing mode, to reduce the 
code length and increase the speed.

void strcpy(d.s)
register char *d, /* string to copy to */

*s: /* string to copy from */
(

do {
} while ((*d++=*s++)!='\O');

)

Because the C compiler must not only conform to the C language 
specification, but must also make use of the 68000 instruction set as provided 
by Motorola, careful use of certain coding techniques can also significantly 
improve execution speed. For example, the two fragments shown below 
produce the same effect (copy a given number of bytes):

void copybytes(d,s,n) 
register char *d,

*s:
register 1nt n:

/* where to copy to */
/* where to copy from */
/* number of bytes to copy */
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{
#1fdef FIRST_METHOD 

while (n--) 
*d++=*s++;

#else
1f (n!=0) { 

do ( 
*d++=*s++;

} while (--n);
)

#endi f
}

However, the second method will execute much more rapidly. In the first 
method, to comply with the C language specification, the register variable n 
must be saved (the Microware compiler saves it to dO) and then decremented, 
and then the saved value must be tested, and a conditional branch taken on 
the result - four instructions, plus one for the instruction to copy the byte, 
making five in total for the loop. In the second method, a byte is copied, then 
the register variable is decremented, and a conditional branch taken on the 
result - a total of three instructions. Thus the second method will execute 
significantly faster. The extra instruction 1f (n 1=0) is unimportant for the 
speed of the function, because it is executed only once.

If program execution speed is important, you should identify the small 
percentage of the program that is consuming most of the processor's time. If 
you are already familiar with the behaviour of the C compiler, you can then 
recode those fragments for optimum speed of execution. Otherwise, use the 
'-a' option of the cc executive to compile the C source code to assembly 
language, and study the behaviour of the C compiler in those critical code 
fragments. This should help you decide on appropriate modifications to the C 
source code.

If, after having optimized your C source code in this way, you feel that the 
output of the C compiler is still not producing the fastest code possible, you 
can write a separate assembly language function to be called instead of the C 
code. Of course, this should be a last resort, as it is less portable and less 
readable.

A corollary to the axiom that the program spends most of its time executing 
only a small part of the code, is that the error handling parts of the program 
are executed very infrequently - most of the time a program does not 
generate errors. Therefore it is reasonable to allow error handling code to be 
designed to be easy to write, and informative in its output, rather than trying 
to code it carefully for rapid execution. This applies to other parts of the 
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program that will be used infrequently (perhaps only once), such as 
command line parameter parsing.

15.8 THE 'LINK' INSTRUCTION

The C compiler uses the 68000 link instruction to capture the stack pointer 
on entry to a function. This is required by the Microware C Source Level 
Debugger, to give access to the stack frame (parameters passed, and 
automatic variables) during execution of the function (for example at a 
breakpoint or when single stepping).

Note that because the Source Level Debugger has no information about the 
parameter structure or stack allocation for variables in a function written in 
assembly language, the link and unlk instructions are not strictly needed 
when writing a function in assembly language, although including them 
allows the frame command of srcdbg (and the w command of debug) to 
report which function called the assembly language function.

The following example shows typical code produced by the C compiler. The C 
function:

set5(p) 
int *p; 
(

int x:
X=5;
*p=x;

)

produces the following assembly language when compiled (I have added the 
comments!):

set5: link a5,#0 stack a5. put sp 1n a5, add 0 to sp
movem.l dO/aO,-(sp) save parameter and aO register
move.l #-68,dO ensure at least 68 bytes stack free
bsr _stkcheck
subq.l #4,sp allocate automatic: x
moveq.1 #5,d0 set x = 5
move.l dO,(sp)
movea.1 4(sp),a0 get parameter: p
move.1 (sp).(aO) copy x to *p
addq.l #4.sp de-allocate x
movem.l -4(a5).a0 retrieve aO register
uni k a5 put a5 in sp, unstack a5
rts

Note the use of the stack for automatic variables, and for temporary storage. 
The _stkcheck() function is called to determine that enough stack space is 
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available for the function's needs. If not, the _stkcheck() function exits the 
program with a *** stack overflow *** message. The _stkcheck() function is 
part of 'cstart.a', and uses static storage variables initialized by 'cstart.a' to 
determine whether there is sufficient stack available. Because 'cstart.a' is 
only used when creating a program, the _stkcheck() function is not 
appropriate for the creation of operating system components such as device 
drivers and file managers - either stack checking must be disabled using the 
'-s' option of cc, or the programmer must supply an alternative _stkcheck() 
function.

15.9 A FUNCTION IN ASSEMBLY LANGUAGE
One common reason for writing a C-callable function in assembly language 
is to supplement the standard C libraries. Microware have not supplied 
library functions for the privileged (system state only) system calls. The 
example below shows a typical assembly language function to make the 
F$IRQ system call, with an example of this function being called from C:

{
1f ((f_1rq( vector, priority,handl er .port) )=ERROR) 

pr1ntf("Error #Xd\n".errno);
1

This call to the function f_irq is passing four parameters. The first 
parameter (the interrupt vector number) will be in the dO register, and the 
second parameter (the software polling priority) will be in the dl register. 
The remaining two parameters (the address of the interrupt handler 
function, and the address of the interface) will be on the stack. The third 
parameter will be just above the return address (at 4(a7)), while the fourth 
parameter is above that (at 8(a7)).

The following implementation of f_irq makes good use of the fact that the 
parameters have been ordered so that dO and dl already contain the correct 
parameters for the F$IRQ system call, and the remaining two parameters 
are in the correct order to be picked up by a single movem instruction. As 
always, the aG register contains the static storage address, which must be 
copied to the a2 register as a parameter to the F$IRQ system call.

The function returns 0 if the F$IRQ call gave no error. Otherwise, the error 
code is extended to a long word and saved in the static storage field errno, 
and -1 is returned. Note that the returned value is in the dO register, as 
required by the C compiler. The function saves all the registers that it 
modifies (including dl, which will be modified if F$IRQ returns an error). 
This takes 16 bytes of space on the stack, so the third parameter passed to 
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the function is at 20(a7) - 16 bytes of temporary storage, plus 4 bytes of 
return address.

#endasm

#asm
f_1 rq: movem.l dl/a0/a2-a3. -(a7) save registers
* dO and dl already contain the icorrect parameters

movem.l 20(a7),a0/a3 get handler and port addresses
movea.l a6,a2 copy static storage address
os9 FSIRQ
bcs.s f_1rqlO ..error
moveq #0.d0 no error - return 0
bra.s f_1rq20

f_irqlO move.l dl,errno(a6) save OS-9 error code
moveq #-l.d0 Indicate error

f_1 rq20 movem.l (a7)+,dl/a0/a2-a3 retrieve registers
rts

Note that the symbol f_irq is terminated by a colon. This causes the 
assembler to make the symbol public, so the function can be called from 
another source file. Of course, it is also good practice to provide a proper 
declaration for the function in your C source code. Note also that although 
the OS-9 error codes are 16-bit values, the kernel ensures error codes 
returned by system calls are 32-bit, with the high word set to zero.

15.10 STRUCTURE RETURN
A structure can be of any length. Therefore it is not possible to use processor 
registers to return a structure. Instead, if a function is defined as returning a 
structure, the compiler reserves a private block of static storage for the 
returned structure, and returns a pointer to the structure. The following 
example illustrates parameter passing with structure return. It shows a C 
program, and the output of the C compiler in assembly language. This 
example also shows the use of register variables by the C compiler.

//include <std1o.h>
typedef struct ( /* declare a structure type */

1nt x.y.z;
) 1nt3;

1nt3 setintsO; /* declare a function returning an item of that type */

main() 
(

1nt3 n; /* define an automatic of that type */
n=set1nts(4,5,6); /* set 1t from the value returned */
prlntft’td %d Jd\n',n.x,n.y,n.z); /* display the results */

)
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/* Define the function returning an Item of the structure type: */ 
1nt3 set1nts(1, J, k) 
register 1nt 1.j.k;
{

1nt3 m: /* define an automatic of that type */
m.x=1; /* fill 1t with the given values */
m.y-j;
m.z-k;
return(m): /* return the structure */

)

The following assembly language output was obtained using the command:

$ cc -qixa testl.c

The '-a' option instructs the cc executive to save the assembly language 
output of the C compiler in a file 'test 1.a', and not to proceed to assemble and 
link the program. Of course, the C compiler does not generate comments for 
its assembly language output - the comments are my addition!

psect testl_c,0,0. 0,0,0 "null” psect starts code file
nam testl_c nam and ttl are listing directives
ttl main

* Note that symbols not declared with ’static’ are public:
ma1 n: link a5.#0 save a5, set stack frame ptr

movem.l #_lll.-(sp) save registers dO-dl/aO
move.l #_3.d0 check 88 bytes of stack free
bsr _stkcheck
lea -12(sp),sp allocate stack for 'n'
pea 6.w third parameter 1s 6
moveq. 1 #5,dl second parameter 1s 5
moveq.1 #4,d0 first parameter 1s 4
bsr setints call function 'setints'
addq.1 #4,sp ditch third parameter
movea.l dO.aO copy returned value - ptr to structure
move.l (aO).(sp) copy the structure to ’n'
move.1 4(aO),4(sp) three long words
move.l 8(a0),8(sp)
move.l 8(sp).-(sp) fourth parameter 1s 'n.z'
move.l 8(sp),-(sp) third parameter is 'n.y'
move.l 8(sp),dl second parameter is 'n.x'
lea _5(pc),aO point at format string
move.l aO.dO it 1s the first parameter
bsr pr1ntf call function 'prlntf'
addq.l #8.sp ditch parameters on stack
lea 12(sp),sp de-allocate stack used for 'n'

_4 movem.l -8(a5),#_l retrieve registers dl/aO
uni k a5 restore a5 and stack ptr
rts return to 'cstart'

_3 equ 0xffffffa8
_1 equ 0x00000102
_2 equ 0x00000014
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* Function 'setlnts'. Note that the 'link' Instruction saves a5 on the
* stack, so after 6 other registers have been saved, the third
* parameter 1s at 32(a7). Notice also how the compiler makes use of
* the d4, d5, and d6 registers for 'register' variables:
setlnts: link a5,#0

movem.l #_6!3,-(sp) 
move.l d0,d4
move.l dl,d5
move.l 0+_7(sp),d6 
move.l #_8,d0 
bsr _stkcheck
vsect 
align

save a5. set stack frame ptr 
save registers d0-dl/a0-a2/a4 
copy first parameter to register 
copy second parameter to register 
copy third parameter to register 
check 76 bytes of stack free

start local static storage 
force word alignment

_10 ds.blZ

ends 
lea -12(sp),sp
move.l d4,(sp) 
move.l d5,4(sp) 
move.l d6,8(sp)
move.l (sp),_10(a6)
move.l 4(sp),_10+4(a6)
move.l 8(sp),_10+8(a6) 
lea _10(a6),a0
move.l aO.dO 
lea 12(sp),sp
bra _9
nop

reserve storage for structure 
return
end local static storage 
allocate stack for 'm' 
'm.x' = first parameter 
'm.y' = second parameter 
'm.z' = third parameter 
copy 'm' to local static storage 

three long words

point at the local structure 
1t 1s the returned value 
deallocate stack used for 'm'

_9

_8
_6
_7

movem.l -16(a5),#_6
unlk a5
rts
equ 0xffffffb4
equ 0x00000170
equ 0x00000020

retrieve registers a0-a2/a4 
restore a5 and stack ptr 
return to 'main'

_5 dc.b’Xd Id Xd*,$d,$O 
ends

the 'printf' format string 
end of code

15.11 CALLING C FROM ASSEMBLY LANGUAGE
The OS-9 kernel is written in assembly language, and device drivers and file 
managers have traditionally also been written in assembly language. 
Therefore the operating system interface to file managers and device drivers 
uses processor registers for parameter passing, and is not directly compatible 
with the output of the C compiler. However, file managers, device drivers, 
and other operating system components can be written in C, provided an 
appropriate assembly language "skeleton" is used. This can (and, in fact, 
must) be in a separate source file, so the programmer need only be concerned 
with writing in C. Once the appropriate skeleton has been written, it can be 
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used without modification for other device drivers (or file managers, and so 
on).

As described above, the C compiler stack checking routine is not compatible 
with the system state stack usage within the operating system, so the '-s' 
option of the cc executive must be used, to instruct the C compiler not to 
make calls to the _stkcheck() function to check for free stack space. 
Alternatively, the programmer can write his own _stkcheck() function, to 
check for stack overflow within the system state stack (which uses the second 
half of the process descriptor). If this is done, any interrupt service routine 
must be in a separate source file which is compiled with stack checking 
disabled, because a different stack (the interrupt stack) is used during 
interrupt processing.

If variables are defined as static storage (either because they are defined in 
the outermost scope of the source file, or because they are prefixed with the 
static keyword), the C compiler generates a vsect to indicate to the linker 
that static storage is required, and generates instructions using addressing 
relative to the a6 register to access them. When creating the final output 
module, the linker adds up all the static storage definitions from vsect 
sections, and puts the total in the "memory requirement" field of the module 
header (M$Mem). The linker also adjusts all instructions that address static 
storage locations, to take account of the previously allocated static storage 
from previous source files. Lastly, if the output module is of type "trap 
handler" or "program", the linker adjusts all static storage addressing 
references by -32k bytes, as the kernel adds 32k bytes to the static storage 
pointer register (a6) when forking a program or calling a trap handler. This 
helps compensate for the signed 16-bit constant offset indexing limitation of 
the 68000 (as described above).

The C compiler is intended for the production of programs, so it generates 
static storage variable references using the a6 register. When writing an 
operating system component, such as a device driver or file manager, C static 
storage definitions can be used to provide references into a chosen memory 
structure, provided the address of that memory structure is placed in the a6 
register by the assembly language "skeleton". If the "memory requirement" 
field (M$Mem) of the module header of the operating system component is 
not used, any memory structure can be chosen. For example, a file manager 
might use static storage references to access the path descriptor fields. 
Otherwise, the chosen memory structure must be the structure whose size is 
determined by the "memory requirement" field, because the linker generates 
this field by adding the sizes of all the static storage definitions (vsects). For 
example, this field in the header of a device driver is used by the kernel to 
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determine the size of the Device Static Storage to be allocated. Therefore 
static storage definitions and declarations in a device driver must refer to 
variables in the Device Static Storage, just as they would if the device driver 
were written in assembly language.

An important consideration when writing operating system components in C 
is the amount of stack used. During a system call, the second half of the 
process descriptor is used for the stack. This gives a total of about Ik bytes of 
stack. During an I/O call this will be used by the kernel, the file manager, 
and the device driver, and by any system calls that these components make 
themselves. It is easy to use up a lot of stack when writing in C. The compiler 
uses stack for preserving registers, for automatic variables, and for passing 
parameters when calling other functions. Because a stack overflow in system 
state is catastrophic (the upper part of the caller's process descriptor will be 
corrupted), it is important to be sparing in the use of C features that will 
cause stack usage. Stack space can be saved by minimizing the number of 
levels of nesting of function calls, and by using static storage variables rather 
than automatic variables and function parameters. Using register variables 
does not save stack space, as the compiler will save the current contents of 
the registers onto the stack on entry to the function.

If you suspect that stack overflow may be a problem, you can add a system 
state stack checking function, as shown in the example skeleton for a file 
manager below. Also, if you set a breakpoint (using the system state 
debugger) within the device driver, you can display the process descriptor 
memory, and see if the stack usage is approaching the top of the process 
descriptor variables structure. As a last resort, if you need more stack, you 
can add a stack switching capability to the device driver or file manager 
skeleton, perhaps using the field P$ExpStk in the Process Descriptor (see 
the section on the Process Descriptor in the chapter on OS-9 Internal 
Structure). This uses a stack space allocated by the driver when it is 
initialized, or by the file manager when the path is opened. The skeleton 
routine saves the current stack pointer (perhaps in the Device Static Storage 
or P$ExpStk), and then sets the stack pointer to the top of the allocated 
stack space. On return from the C function, it restores the original stack 
pointer.

If this technique is used, it is important to be sure that there cannot be 
concurrent calls that would use the same stack. For example, there cannot be 
concurrent calls on the same path (the kernel queues such calls), so a stack 
space allocated when a path is opened is secure against concurrent usage. 
Similarly, SCF and RBF queue concurrent calls into the device driver, by 
marking the Device Static Storage (except for SCF Get Status calls).
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Therefore a device driver could use a stack space allocated during its 
initialization routine. However, a file manager should not use such a stack 
space, as there may be multiple concurrent calls to the file manager for the 
same device, but on separate paths. A file manager must therefore use a 
stack allocated for each path.

The problem of concurrent access can be completely relieved by allocating a 
stack extension to each process, saving the address and size in the P$ExpStk 
field of the process descriptor. If a stack extension is allocated for each 
process, the stack allocated must be sufficient for all file managers and device 
drivers needing extra stack space that the process may call. Note that the 
kernel does not use the P$ExpStk field. If a stack extension is allocated 
using this field, an extension to the F$DelTsk system call must be added 
(perhaps in a kernel customization module) to check this field and 
de-allocate any stack extension when the process is terminated. Similarly, an 
extension to the F$AllTsk system call could be added to allocate the stack 
extension when the process is created, rather than leaving it to the discretion 
of individual file managers and device drivers. Note that if this technique of 
"global" stack switching is used, any operating system components that 
perform stack checking by expecting the system state stack to be in the 
process descriptor will fail.

15.12 A DEVICE DRIVER IN C
As described above, a device driver written in C requires an assembly 
language "skeleton" file. This skeleton has four main functions which cannot 
be provided from a C source file:

a) Provide a root psect, giving the module type and the address 
of the table of routine offsets to the linker.

b) Generate the table of offsets to the device driver routines (the 
routines in the skeleton).

c) In each routine, convert the parameters passed by the kernel 
or file manager into a form suitable for passing to a C 
function, and then call the C function.

d) In each routine, on return from the C function, convert the 
returned error status into the standard OS-9 format expected 
by the kernel or file manager, and convert any returned 
values into the format expected by the kernel or file manager.
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The device driver skeleton shown below is for a device driver working with 
the RBF file manager. It can be used for any RBF device driver. A different 
skeleton is required for each file manager, because the parameters passed are 
different, but the skeleton below can easily be adapted to any file manager - 
the principles are the same. In the skeleton below, the a5 register is reset to 
zero on entry to each function, to indicate to a source level debugger that this 
is the top of the available stack frame. The instructions are not strictly 
necessary unless a source level debugger is going to be used to debug the 
driver. The present Microware Source Level Debugger cannot be used to 
debug operating system components, although at the time of writing a system 
state source level debugger is under development.

In addition to the skeleton, the device driver writer will also need to write 
assembly language functions to permit the C code to make any necessary 
operating system calls. This applies to the privileged (system state only) calls, 
for which there are no functions in the Microware C library, but also to the 
non-privileged calls. This is because many of the standard C library 
functions assume that they are being called from a user state program, and 
use variables and buffers that are not appropriate to a device driver or other 
operating system component. However, the math functions (in the library 
'/dd/LIB/math.l') can be used, and indeed calls to these functions will 
automatically be generated by the C compiler.

The skeleton shown below takes no account of the use of floating point 
registers in an FPU. This is not necessary because the C compiler generates 
instructions at the start of each function to save any FPU registers it will 
use, and at the end of the function to restore them.

The C language specifies that static storage variables can be defined with 
initializing values. When a program is forked under OS-9, the kernel uses 
information in the module header to initialize any such variables in the 
program's static storage. However, the kernel does not perform such a 
function when allocating a Device Static Storage (or any other operating 
system memory structure), so initialized static storage variables cannot be 
used. Note that the kernel does clear the Device Static Storage to zeros 
before calling the initialization function of the device driver.

Because the kernel does not initialize any static storage variables, the "jump 
table" created by the linker for accessing subroutines at a relative distance 
exceeding +/-32k bytes cannot be used. To ensure that the linker has not 
found the need to generate a jump table, the '-a' option of the linker should 
not be used. If the device driver is larger than 32k bytes in size, the '-k2cl' 
option of the cc executive can be used, provided the target processor is a 

388



MICROWARE C AND ASSEMBLY LANGUAGE

68020/030/040, or the '-kOcl' option if the target processor is a 68000/010/070. 
Otherwise some manually-coded technique must be used to overcome this 
limitation of the 68000 processor.

□ RBF Device Driver Skeleton
* File 'rbskel.a'
* Device driver skeleton for RBF device drivers

use /dd/DEFS/oskdefs.d
Typ_Lang set (Dr1vr«8)+0bjct
Attr_Rev set ((ReEnt+SupStat )«8)+0
Edition set 1
* The psect directive, giving the module type as "device driver":

psect rbskel,Typ_Lang,Attr_Rev,Ed1ti on,0,EntryTable
* The table of offsets to the driver routines:
EntryTable dc.w In1t Initialize

de .w Read read
dc.w Write write
dc.w Getstat get status
dc.w SetStat set status
dc.w Term terminate

***********<
dc.w 

lr******^
0 

.*****>*****
(exception handler)

**********
* In1t
* Initialize device driver

* Passed: (al) - Device Descriptor
* (a2) = Device Static Storage
* (a4) = Process Descriptor
* (a6) = System Globals
★

* Returns: carry set if error, with error code in dl.w 
*

* Calls C function:
★
*
*

int 1n1t(dd)
mod_dev *dd: device descriptor ptr

In1t:
movea .w #0,a5 reset stack frame ptr
move.l a6,sysglobs(a2) save the System Globals ptr
move.l a4.procdesc(a2) save the Process Descriptor ptr
move. 1 a2,a6 copy the static storage ptr
move.l al.dO pass the device descriptor ptr as

*

bsr 1 n11
the first (only) parameter 
call the C function

move.l dO,dl copy returned error code
*

beq.s In1t90
(0 -> no error)
..no error: carry 1s clear

or1 #Carry,ccr set carry to Indicate error
In1t90 rts
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****************************************

* Read
* Read sectors

* Passed: 
*

*

dO.l = number of sectors to read 
d2.1 = start LSN 
(al) = Path Descriptor 
(a2) = Device Static Storage 
(a4) = Process Descriptor 
(a6) = System Globals

* Returns: carry j>et if error, with error code 1n dl.w

* Calls C function:
* int read(n.b)
* unsigned 1nt n, number of sectors to read
* b; first sector to read
*

Read:
movea.w #0,a5 reset stack frame ptr
move.l al.pathdesc(aZ) save the Path Descriptor ptr
move.l a4,procdesc(a2) save the Process Descriptor ptr
move.l a2,a6 copy the static storage ptr
move.l d2,dl pass start LSN as second parameter

* The following line Is needed prior to OS-9 version 2.4:
andl.l #$000000ff,dO make sector count a long word
bsr read call the C function
move.l dO.dl copy returned error code

* (0 => no error)
beq.s Read90 ..no error; carry Is clear
or1 #Carry.ccr set carry to Indicate error

Read90
rts

****************************************

* Write
* Write sectors 
*

* Passed: dO.1 = number of sectors to write
* dZ.l = start LSN
* (al) = Path Descriptor
* (a2) = Device Static Storage
* (a4) = Process Descriptor
* (a6) = System Globals

* Returns: carry set If error, with error code 1n dl.w 
*

* Calls C function:
* Int wrlte(n.b)
* unsigned int n, number of sectors to write
* b; first sector to write
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Write:
movea.w #0,a5 reset stack frame ptr

save the Path Descriptor ptr
save the Process Descriptor ptr 
copy the static storage ptr
pass start LSN as second parameter 
call the C function 
copy returned error code 
(0 => no error)
..no error; carry 1s clear
set carry to Indicate error

*

move.l 
move.l 
move.l 
move.l 
bsr
move.l

beq.s 
or1

al,pathdesc(a2) 
a4,procdesc(a2) 
a2.a6
dZ.dl
write
dO.dl

Wr1te90
#Carry.ccr

Wr1te90
rts

* GetStat
* Get Status wild card call 
*

* Passed: dO.w - function code
* (al) = Path Descriptor
* (a2) = Device Static Storage
* (a4) = Process Descriptor
* (a6) - System Globals

* Returns: carry set 1f error, with error code 1n dl.w

* Calls C function:
* 1nt getstat(c.r)
★ unsigned 1nt c; function code
★
*

GetStat:

REGISTERS *r; ptr to caller's stack frame

*
move.l a5,dl pass caller's register stack 

frame ptr as second parameter
movea .w #0,a5 reset stack frame ptr
move.l al.pathdesc(aZ) save the Path Descriptor ptr
move.l a4,procdesc(a2) save the Process Descriptor ptr
move.l a2,a6 copy the static storage ptr
andi. 1 #$OOOOffff,dO make function code long
bsr getstat call the C function
move.l dO.dl copy returned error code 

(0 => no error)
beq.s GetStat90 ..no error; carry 1s clear

GetStat90
or1

rts

#Carry,ccr set carry to Indicate error
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* SetStat
* Set Status wild card call

* Passed:

*

dO.w = function code
(al) - Path Descriptor
(a2) = Device Static Storage
(a4) = Process Descriptor
(a6) = System Globals

* Returns: carry set 1f error, with error code in dl.w

* Calls C function:
* 1nt setstat(c.r)
* unsigned int c: function code

**
SetStat:

REGISTERS *r: ptr to caller's stack frame

move.l a5.dl pass caller's register stack
frame ptr as second parameter

movea.w #0,a5 reset stack frame ptr
move.l al,pathdesc(a2) save the Path Descriptor ptr
move.l a4,procdesc(a2) save the Process Descriptor ptr
move.l a2,a6 copy the static storage ptr
andi.l #$OOOOffff,d0 make function code long
bsr setstat call the C function
move.l dO.dl copy returned error code

SetStat90

(0 => no error)
beq.s SetStat90 ..no error: carry 1s clear
ori #Carry,ccr set carry to indicate error

rts

* Term

r Vc A Ar A A A A A Ar Ar Ar A A Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar at at at

* Terminate device driver

* Passed: (al) = Device Descriptor
* (aZ) = Device Static Storage
* (a4) = Process Descriptor

(a6) = System Globals

* Returns: carry set 1f error, with error code 1n dl.w

* Calls C function:
* int term(dd)

Term:

mod_dev *dd; device descriptor ptr

move.l a6,-(a7) save register
movea.w #0,a5 reset stack frame ptr
move.l a4,procdesc(a2) save the Process Descriptor ptr
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move.l a2,a6 copy the static storage ptr
move.l al.dO pass the device descriptor ptr 

as the first (only) parameter
bsr term call the C function
move.l dO.dl copy returned error code 

(0 => no error)
beq.s Term90 ..no error: carry 1s clear
or1

Term90
#Carry,ccr set carry to Indicate error

movea.l 
rts

********************

(a7)+,a6 retrieve register

4- 4- 4-

* IRQSvc
* Interrupt service routine. It is assumed that the C '1n1tO'
* function has Installed this routine as the Interrupt handler, using
* the F$IRQ system call. 
*

* Passed: (a2) = Device Static Storage
* (a3) = Port Address
* (a6) = System Globals

* Returns: carry set 1f the Interrupt Is not from our device

* Calls C function:
* 1nt irqsvc(port)
*
*

void *port; port address

IRQSvc:
move.l a5,-(a7) save register
movea. w #0,a5 reset stack frame ptr
move.l a2,a6 copy the static storage ptr
move.l a3,d0 pass the port address as the

*

bsr 1rqsvc
first (only) parameter 
call the C function

tst.l dO was Interrupt handled?
beq.s IRQSvc90 ..yes: carry is clear
or1 #Carry,ccr set carry to Indicate not our

*

IRQSvc90 movea. 1 (a7)+,a5
1nterrupt
retrieve register

rts 
ends

One or more separate C source files must be created, containing the code to 
perform the actual work of the device driver. The example below shows a 
"null" driver, compatible with the RBF driver skeleton shown above. Each 
function returns zero if there was no error, otherwise it returns the 
appropriate OS-9 error code. Note that the structure rbfs (struct rbfstatic) 
defines the kernel and file manager static storage, including the drive tables. 
This structure type is declared in 'DEFS/rbf.h'. Because this static storage is 
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defined within the source code of the device driver, the static storage files 
such as 'LIB/drvs4.1' are not needed (and must not be used) at link time.

/* RBF device driver in C. Must be linked with 'rbskel.r'.
Operating system definitions: */

/(define RBF_MAXDRIVE 4

/(Include <errno.h>
/(include <modes.h>
/(Include <rbf.h>
/(Include <MACHINE/reg.h>
/(Include <procid.h>
/(Include <sg_codes.h>
/(include <path.h>
/* Functions 1n 'rbskel.a': 
extern 1nt IRQSvcO:
/* Static storage definitions 
struct rbfstatic rbfs: 
void *sysglobs;
Pathdesc pathdesc;
procid *procdesc;
1nt errno:
unsigned short irqmask;

/* Initialize */

/* number of drives (required by 
'rbf.h') */

/* error codes */
/* file access modes */
/* RBF structures */
/* register stack frame */
/* process descriptor */
/* Get/Set status codes */
/* common path descriptor structure */

/* Interrupt handler skeleton */
(for Device Static Storage): */

/* kernel and file manager static */
/* System Globals ptr */
/* path descriptor ptr */
/* process descriptor ptr */
/* general error number storage */
/* status register Image for masking 

Interrupts */

1nt Inlt(dd) 
mod_dev *dd: /* pointer to device descriptor */
(

rbfs.v_ndrv=RBF_MAXDRIVE; /* set number of drives supported */ 
1rqmask=dd->_m1rqlvl<<8 | 0x2000: /* build status register image

for masking Interrupts */
/* Install Interrupt handler: */
if (f_irq(dd->_mvector,dd->_mpr1ority, IRQSvc,rbfs.v_port)=ERROR) 

return(errno); /* error - return error code */
return(O); /* no error */

) 
/* Read sectors */ 
1nt read(n.s) 
unsigned 1nt n, /* number of sectors to read */

s; /* start LSN */
{

register Rbfdrlve dtb; /* drive table ptr */
register struct rbf_opt opts; /* path descriptor options ptr */ 
unsigned char *buffer; /* ptr to buffer to read into */ 
1nt drvnum; /* logical drive number */
dtb=pathdesc->rbfpvt.pd_dtb: /* get drive table ptr */
buffer=pathdesc->path.pd_buf; /* get buffer ptr */
opts=&pathdesc->rbfopt; /* point at path descriptor options */ 
drvnum=opts->pd_drv; /* get logical drive number */
return(O): /* no error */
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/* Write sectors */ 
1nt write(n.s) 
unsigned int n, /* number of sectors to write */

S; /* start LSN */
{

register Rbfdrlve dtb; /* drive table ptr */ 
register struct rbf_opt opts; /* path descriptor options ptr */ 
unsigned char *buffer; /* ptr to buffer to write from */ 
1nt drvnum; /* logical drive number */
dtb=pathdesc->rbfpvt.pd_dtb: /* get drive table ptr */
buffer=pathdesc->path.pd_buf; /* get buffer ptr */
opts=&pathdesc->rbfopt; /* point at path descriptor options */
drvnum=opts->pd_drv; /* get logical drive number */
return(O); /* no error */

) 
/* Get status */ 
int getstat(f.r) 
Int f. /* function code */
REGISTERS *r; /* ptr to caller's register stack frame */
{

register Rbfdrlve dtb; /* drive table ptr */ 
register struct rbf_opt opts; /* path descriptor options ptr */ 
dtb=pathdesc->rbfpvt.pd_dtb; /* get drive table ptr */ 
opts=&pathdesc->rbfopt; /* point at path descriptor options */
switch (f) { /* act according to function code */

default: /* unknown code */
errno-E_UNKSVC; 
break; 

} 
return(errno); 

) 
/* Set status */ 
1nt setstat(f.r) 
1nt f, /* function code */
REGISTERS *r; /* ptr to caller's register stack frame */
{

register Rbfdrlve dtb; /* drive table ptr */
register struct rbf_opt opts: /* path descriptor options ptr */
dtb=pathdesc>rbfpvt.pd_dtb; /* get drive table ptr */
opts=Xpathdesc->rbfopt; /* point at path descriptor options */
switch (f) ( /* act according to function code */

case SS_WTrk: /* format track i*/
/* Use caller's parameters: */
errno=format(r->d[2],r->d[3],r->d[4]);
break;

default: /* unknown code ’"/
errno=E_UNKSVC; 
break:

)
return(errno);

)

395



MICROWARE C AND ASSEMBLY LANGUAGE

/* Terminate */
Int term(dd)
mod_dev *dd; /* pointer to device descriptor */
{

/* Remove Interrupt handier: */
f_1rq(dd->_mvector.O,NULL,NULL);
return(O): /* no error */

) 
/* Interrupt service routine */ 
1nt Irqsvc(port) 
void *port: /* Interface chip address */
{

return(O): /* Interrupt successfully handled */
}

Normally a make file would be used to compile and link the source files to 
make the device driver. As an example, however, typical command lines are 
shown below:

$ r68 rbskel.a -q -o=RELS/rbskel.r
$ cc -qs rbdrv.c -r=RELS
$ 168 RELS/rbskel.r RELS/rbdrv.r -l=/dd/LIB/math.1
-l=/dd/LIB/sys.1 -O=OBJS/rbdrv

15.13 A FILE MANAGER IN C
The principles described above for writing a device driver in C apply equally 
well to writing a file manager in C. In addition to receiving calls from the 
kernel - for which the parameter convention will always be the same - the 
skeleton must also provide one or more functions to call the device driver 
routines. The skeleton below has been written with a function (CallDriver) 
to pass a fixed set of parameters to the device driver. This function is suitable 
for file managers using the same driver calling conventions as used by SCF 
and RBF, and would also be suitable for any file manager being defined from 
scratch. Therefore this skeleton can be used without modification for almost 
any file manager.

The skeleton passes the address of the path descriptor in the a6 register. 
This means that any static storage definitions within the file manager source 
files will be storage within the path descriptor. The file manager writer must 
take care that the total of such definitions - including the fields used by the 
kernel - does not exceed the 128 bytes available in the first half of the path 
descriptor.

The definitions file 'DEFS/path.h' declares a structure describing the path 
descriptor. It assumes that a file manager definitions file - such as 
'DEFS/rbf.h' or 'DEFS/scf.h' - has already been read. To create a new file 

396



MICROWARE C AND ASSEMBLY LANGUAGE

manager, the programmer should take a copy of 'DEFS/path.h', and edit it to 
include the structures declared for his file manager in a new file analogous to 
'DEFS/rbf.h'. The "null" file manager shown after the skeleton uses the file 
'DEFS/rbf.h', and so has the variables and options section defined by 
Microware for RBF.

The skeleton shown below includes a stack checking function stkcheck(). 
The C source files can therefore be compiled with normal stack checking 
(that is, without the '-s' option).

□ File Manager Skeleton
* File 'fmskel.a'
* File manager skeleton
* Non-null psect giving a module type of "file manager":
Typ_Lang equ (FlMgr<<8)+0bjct
Att_Revs equ ((ReEnt+SupStat)<<8)+0

psect fmskel,Typ_Lang,Att_Revs,Edition,0,fmskel 
use /dd/DEFS/oskdefs.d 

******************************

* Calling convention from kernel

* Passed: (al) = Path Descriptor
* (a4) = Process Descriptor
* (a5) = Caller's Register Stack Frame
* (a6) = System Globals

* Returns: carry set if error, with error code 1n dl.w

* Destroys: may destroy ccr, d0-d7/a0-a4
******************************
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

* Calling convention to C routines 
*
* The parameters passed to the C routine are:
* Caller's Register Stack Frame ptr
* The C routine returns:
* OS-9 error code 1f error, else 0
******************************
******************************

* Entry table 
*
fmskel

dc.w Create-fmskel create
dc.w Open-fmskel open
dc.w MakD1r-fmskel make d1rectory
dc.w ChgDlr-fmskel change directory
dc.w Delete-fmskel delete
dc.w Seek-fmskel seek
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Create:

dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w 
dc.w

lea 
bra. s

Read-fmskel 
Wrlte-fmskel 
ReadLn-fmskel 
WrlteLn-fmskel 
GetStat-fmskel 
SetStat-fmskel 
Close-fmskel

create(pc),a0 
FMCall

read 
write 
read line 
write line 
get status 
set status
close

point at C routine

Open:
1 ea open(pc) ,a0 point at C routine

MakDIr:
bra.s

lea

FMCall

makdlr(pc),a0 point at C routine

ChgDlr:
bra.s

lea

FMCall

chgdlr(pc) ,a0 point at C routine

Delete:
bra.s

lea

FMCall

delete(pc),a0 point at C routlne

Seek:
bra.s

lea

FMCall

seek(pc),a0 poi nt at C routlne

Read:
bra.s

1 ea

FMCall

read(pc),a0 poi nt at C routlne

Write:
bra.s

lea

FMCall

wrlte(pc),a0 point at C routlne

ReadLn:
bra.s

lea

FMCall

readln(pc),aO po1 nt at C routine

WrlteLn
bra. s

1 ea

FMCall

writeln(pc),a0 point at C routine

GetStat
bra.s

lea

FMCall

getstat(pc),a0 po1 nt at C routine

SetStat
bra.s

lea

FMCall

setstat(pc),a0 point at C routine

Close:
bra.s

lea

FMCall

close(pc),a0 point at C routine
* Fall through to FMCall
* Call the appropriate C function (function address 1s 1n aO) 
FMCall

move.l a6,pd_sysglob(al) save System Globals ptr
movem.l a5-a6,-(a7) save registers
move.l a5,d0 pass caller's stack frame ptr
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* C-callable routine to call the device driver 
*

movea.l 
jsr 
move.l 
beq.s 
ori

FMCalUO movem.l 
rts

al ,a6 
(aO) 
dO.dl 
FMCalUO 
#Carry,ccr 
(a7)+,a5-a6

copy Path Desc ptr as C static 
call C routine 
copy error status
..no error; leave carry flag clear 
set carry to Indicate error 
retrieve registers

"it A" A: Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar Ar A" i

* Call Driver

4r Ar Ar A Ar Ar Ar A Ar Ar Ar

* Passed: dO.l - Offset to routine offset 1n entry table, e.g. D_REA0
* dl.l = First parameter for driver
* 4(a7) = Second parameter
* 8(a7) = Third parameter
* 12(a7) = Fourth parameter
* <a6) = Path Descriptor
* Returns: 0 if carry clear from driver, else dl.w extended to Int
* Destroys: ccr 
★

* Passes: d0-d3 = Parameters
* (al) = Path Descriptor
* (a2) = Device Static Storage
* (a4) - Process Descriptor
* (a5) = Caller's register stack frame
* (a6) - System Globals

* Driver may destroy: ccr, d0-d7/a0-a6

CallDriver:
movem.l d2-d7/a0-a6,-(a7) save regs
move.l d0.d4 copy routine offset offset
move.l dl.dO copy first parameter for driver
movem.l 56(a7),dl-d3 get three more parameters
movea.1 a6,al copy Path Descriptor ptr
movea. 1 PD_DEV(al),a2 get Device Table
movea.1 V$DRIV(a2),a0 get address of driver module
movea.l V$STAT(a2).a2 get Device Static Storage ptr
movea.l PD_RGS(al),a5 get caller's stack frame ptr
movea. 1 PD_SysGlob(al),a6 and System Globals ptr
movea.l D_Proc(a6),a4 and Process Descriptor ptr
add.l M$Exec(aO),d4 get offset to routine offset table
move.w 0(a0,d4.1),d4 get offset to routine
jsr 0(a0,d4.w) call driver routine
bcc.s CallDlO . .no error
moveq #0,d0
move.w dl.dO copy error code as a long word
bra.s CallD20

CallDlO moveq #0,d0 Indicate no error
CallD20 movem.l 

rts
(a7)+.d2-d7/aO a6 retrieve registers
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******************************
* _stkcheck
* System state stack overflow check, assuming the system state stack 
* 1s in the process descriptor.
* Hangs at '_stkerr‘ 1f stack overflow 
*

* Passed: (a6) = Path Descriptor
* (a7) = stack

* Minimum stack leeway to Insist on. 1n addition to C compiler default: 
_stkm1n: equ 200
_stkcheck: move.l a0,-(a7) save register

movea.l P0_SysGlob(a6),a0 get ptr to System Globals
movea.l D_Proc(aO),a0 get Process Descriptor ptr
add.l a7,d0 calculate desired new stack bottom
subl.l //_stkm1n+P$Last,dO with some margin
cmp.l aO.dO
movea.l (a7)+,a0 retrieve register
bcs.s _stkerr ..not enough stack
rts 

_stkerr: 
* Insufficient stack - loop forever: 

bra.s _stkerr 
ends

Below is the corresponding C source code to make a "null" file manager.
/* RBF format file manager 1n C. Must be linked with 'fmskel.r'. 

Operating system definitions: */
//Include <errno.h> /* error codes */
//Include <modes.h> /* file access modes */
//Include <rbf,h> /* RBF structures */
//Include <MACHINE/reg.h> /* register stack frame */
//Include <prodd.h> /* process descriptor */
//Include <sg_codes.h> /* Get/Set status codes */
//Include <path.h> /* common path descriptor structure */

/* Functions 1n 'fmskel.a': 
extern 1nt CallDrlverO;

/* Static storage definitions 
union pathdesc pd:
/* Create */ 
1nt create(r) 
REGISTERS *r; 
(

char *pl1st:

pl1st=r->a[0]: 
return(O):

/* call the device driver */

(for Path Descriptor): */
/* path descriptor */

/* caller's register stack frame */

/* ptr to pathlist */

/* get ptr to pathllst */
/* no error */

1
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/* Open */ 
1nt open(r) 
REGISTERS *r; 
r

/* caller's register stack frame */
i

char *p!1st;

pl 1st=r->a[O]; 
return(O);

)
/* Make directory */ 
int makdlr(r)

/* ptr to pathlist */

/* get ptr to pathllst */
/* no error */

REGISTERS *r;
(

char *plist;

plist=r->a[O];
return(O);

}
/* Change directory */ 
1nt chgd1r(r)

/* caller's register stack frame

/* ptr to pathllst */

/* get ptr to pathlist */
/* no error */

*/

REGISTERS *r;
{

char *pl1st;

pl 1st=r->a[O]; 
return(O);

)
/* Delete */
Int delete(r)

/* caller's register stack frame

/* ptr to pathllst */

/* get ptr to pathlist */
/* no error */

*/

REGISTERS *r;
(

char *p!1st;

pl 1st-r->a[0]: 
return(O);

)
/* Seek */
1nt seek(r)

/* caller's register stack frame

/* ptr to pathlist */

/* get ptr to pathlist */
/* no error */

*/

REGISTERS *r;
{

unsigned 1nt pos;

pos=r->d[l];
return(O);

}
/* Read */
1nt read(r)

/* caller's register stack frame

/* desired position */

/* get desired position */
/* no error */

*/

REGISTERS *r; 
(

/* caller's register stack frame */

unsigned 1nt n;
unsigned char *p;

/* number of bytes to read */ 
/* buffer to read to */
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{

n=r->d[l]: 
p=r->a[O]; 
return(O);

/* 
/*
/*

get number of bytes to read */
get ptr to buffer */
no error */

}
/* Write */
1nt write(r)
REGISTERS *r: /* caller's register stack frame */
{

unsigned Int n; /* number of bytes to write */
unsigned char *p; /* buffer to write from */

n=r->d[l]: /* get number of bytes to write */
p=r->a[OJ; /* get ptr to buffer */
return(O); /* no error */

}
/* Read Hne */
Int readln(r)
REGISTERS *r: /* caller's register stack frame */
{

unsigned Int n; /* number of bytes to read */
unsigned char *p: /* buffer to read to */

n=r->d[l]: /* get number of bytes to read */
p=r->a[O]; /* get ptr to buffer */
return(O); /* no error */

)
/* Write line */ 
1nt wrlteln(r) 
REGISTERS *r: 
(

/* caller's register stack frame */
I

unsigned 1nt n; /* number of bytes to write */
unsigned char *p; /* buffer to write from */

n=r->d[l]; /* get number of bytes to write */
p=r->a[O]: /* get ptr to buffer */
return(O); /* no error */

)
/* Get status */ 
1nt getstat(r) 
REGISTERS *r: /* caller's register stack frame */

/* Call the driver's Get Status routine, passing the 
function code: */

return(Cal 1Driver(D_GSTA,r->d[l])):
}
/* Set status */
1nt setstat(r)
REGISTERS *r; /* caller's register stack frame */
{

/* Call the driver's Set Status routine, passing the 
function code: */
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return(Cal 1Dri ver(D_PSTA,r->d[1]));
)
/* Close */
1nt close(r)
REGISTERS *r; /* caller's register stack frame */
( 

return(O); /* no error */
)

Normally a make file would be used to compile and link the source files to 
make the file manager. As an example, however, typical command lines are 
shown below. Note that the cc '-s' option is not used,. because a stack 
checking function is provided in 'fmskel.a':

$ r68 fmskel.a -q -o=RELS/fmskel.r
$ cc -q rbmgr.c -r=RELS
$ 168 RELS/fmskel.r RELS/rbmgr.r -l=/dd/LIB/math.1 
-l=/dd/LIB/sys.1 -O=OBJS/rbmgr

15.14 HINTS ON C PROGRAMMING
C is a very powerful programming language, but it can also be a very 
confusing language. This section attempts to clarify some of the most 
common difficulties with C.

15.14.1 Declarations and Definitions

A definition is a statement that creates static storage or program code. A 
declaration is a statement that describes an object - a type, or a variable, or 
a function - without causing the compiler to generate any output. The syntax 
of definitions and declarations is very similar. For example, a declaration of a 
function simply omits the arguments and the compound statement body of 
the function that would make it a definition. A definition of a variable is 
converted to a declaration by preceding it with the keyword extern.

Understanding the syntax of declarations and definitions is one of the most 
common difficulties in C programming. In fact, once the principle is known, 
the process is very simple. In short, you should start with the symbol name, 
and work outwards using the standard order of precedence of the operators, 
as shown in the book "The C Programming Language", by Kernighan and 
Ritchie. The example below shows the technique. It is easiest if an 
appropriate phrase is used to replace each operator. The example shows the 
declaration of an array (it is a declaration rather than a definition, because 
the array size is not given), followed by a line for each operator, in the order 
of precedence, together with an appropriate phrase describing the operator:
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1nt *(*fred[])(): 
fred 
fred[] 
*fred[] 
(*fred[])() 
*(*fred[])()
int *(*fred[])()1nt 
/* fred is an array 

to int */

/* fred is */
/* an array of */
/* pointers to */
/* functions returning */
/* pointers to */
/* 1nt */

of pointers to functions returning pointers

Exactly the same technique is used in reverse to create a desired definition or 
declaration. As with all expressions, parentheses are used to change the 
order of precedence of operators (as in the example above).

A cast operator is exactly the same as placing a declaration of an object of the 
desired type in parentheses, but omitting the object name. It causes the 
compiler to convert the value of an object of one type into the form of 
another type for use in an expression. For example:

1nt (*p)();

char *s;
p-(1nt <*)<))s;

/* 'p' 1s a pointer to a function returning 
an 1nt */

/* 's' 1s a pointer to char */
/* cast 's' to the type of 'p', and copy 1t 

to 'p' */

15.14.2 Pointers and Arrays

The concept of a pointer does not appear in most programming languages, 
but it is essential in a language designed for writing operating system 
components. In C, a pointer variable contains a memory address, just as a 
processor address register does. A pointer variable can be assigned any 
memory address (even an illegal address which will cause a bus error when 
the pointer is used to access memory). However, a C pointer has an 
additional property - the type of object it points to. For example, the 
statement:

1nt *J1m;

defines a pointer that will be used to address objects of type int. Because the 
type of the objects pointed to is known to the compiler, the compiler can 
generate correct code when the pointer is used to read or write memory, and 
when arithmetic operations are used on the pointer. In the Microware 68000 
C compiler, an int is a 32-bit long word. That is, it requires four bytes of 
storage. Thus jim is used to point to groups of four bytes:

1nt *J1m;
1nt x.y:
J1m=(1nt *)0x00000000; /* point at memory location zero */
x=*j1m; /* read the long word at address zero */

404



MICROWARE C AND ASSEMBLY LANGUAGE

y=J1m[7]; /* read the long word at address 28 */
J1m=j1m+1; /* add the size of one Integer to J1m */

At the end of this sequence of instructions jim has the value 4.

The relationship between pointers and arrays is another very common source 
of confusion. Again, once the principle is known the confusion disappears. 
Whereas in most programming languages an array name refers to the whole 
of the storage used for the array, in C the array name is actually a constant 
pointer to the array storage - it does not refer to the storage itself. Therefore 
an array name is syntactically a pointer. Its type is a pointer to objects of the 
type of the array elements. For example:

1nt fred[5J;

Here fred is actually a constant pointer to objects of type int. Its "value" is 
the address of the storage allocated for five integers. To illustrate this, the 
following statement defines a variable of type pointer to int:

int *J1m:

If jim is to be used to point to the elements of the array fred, the 
programmer's instinctive reaction is to write:

J1m=&fred;

This is wrong (and syntactically illegal), as it asks the compiler to put into 
the variable jim the address of a constant, fred, and of course a constant has 
no address. In addition, there would be a type mismatch - the address of a 
pointer to int has type pointer to pointer to int, which does not match the 
type of jim. Instead, either of the two following statements can be used:

j1m=fred;
J1m=&fred[0];

The first statement asks the compiler to put the value of a constant pointer 
to int, fred, into the variable jim. The second statement asks the compiler to 
put the address of the first element pointed to by fred into the variable jim, 
which evaluates to the same thing (and indeed the Microware C compiler 
produces the same instructions). Conversely, because fred is a pointer to int, 
all pointer operations can be used on fred, except operations that attempt to 
change its value. The statements below show some examples where fred and 
jim are used to produce the same results (although the code from the 
compiler is different). Some illegal statements are also shown, to illustrate 
the constant nature of fred:

J1m=fred; /* copy the constant value of fred to the variable J1m */

The next four statements all assign the value 4 to the third element of the 
array:
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fred[2]=4;
*(fred+2)=4;
J1m[2]=4;
*(J1m+2)=4;

The following statements illustrate the constant nature of an array name:
fred=jim; /* WRONG - can't assign a value to a constant */
J1m++:
fred++: /* WRONG - can't alter the value of a constant */

15.14.3 Pointers and Functions

The use of pointers to functions also often causes confusion. Pointers to 
functions can be very useful. They allow dynamic configuration of the 
functionality of a program. Pointers to functions are also useful when a 
program wishes to use a separate subroutine module - the program links to 
the subroutine module, and then (using a table of routine offsets at the start 
of the module) builds an array of pointers to the functions in the module.

A pointer to a function simply contains the memory address of the first 
instruction of the function. When a pointer to a function is used to call the 
function, the compiler generates code that loads the pointer into a processor 
address register, and performs a call to the subroutine at the address in the 
address register:

movea.l funcptr(a6),a0 
jsr (aO)

The type of a pointer to a function includes the type of the object returned by 
the function. For example:

double (*mary)();

defines mary as a pointer to a function returning type double. This allows 
the compiler to make correct use of the value returned by the function when 
the pointer is used within an expression to call the function.

Just as with arrays and pointers, the type of a function name is exactly the 
same as the type of a pointer to the function. That is, the function name is a 
constant pointer to the function. Its value is the absolute memory address of 
the first instruction of the function. This means that function names and 
variables that are pointers to functions (returning objects of the same type) 
can syntactically be used interchangeably. The example below shows the 
declaration of a function, and the definition of a pointer to a function 
returning an object of the same type (pointer to char).

char *fred(); /* function returning a pointer to char */
char *(*J1m)(); /* a pointer to such a function */
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Just as with an array name, it is not possible to take the address of a function 
name, because it is a constant (a constant pointer to the function code):

J1m=&fred; /* WRONG */

Instead, to copy the address of the function to a variable (a pointer to a 
function), the function name alone is used:

J1m=fred;

The constant value fred - the address of the function - is copied to the 
variable jim.

Because a function name is a constant pointer to the function, it has all the 
properties of a pointer, except that it cannot be modified. The example 
statements below show that once fred has been copied to the variable jim, 
the two can be used interchangeably to produce the same results, except that 
fred cannot be modified. In the example statements, george is an array of 
pointers to functions returning objects of type "pointer to char":

char *fred(); /* declare a function returning a pointer to char */ 
char *(*J1m)(); /* a pointer to such a function */ 
char *(*george[5])(): /* an array of such pointers */
char *s; /* 's' 1s a pointer to char */

J1m=fred; /* copy the address of the function */
george[3]=fred; /* copy the address of the function */
george[3]=J1m; /* exactly the same result */
s=fred(); /* call the function, and assign the result to 's' */ 
s-J1m(); /* exactly the same effect */
s=george[3](); /* exactly the same effect */

A syntactic laxity in the original specification of C allows an alternative usage 
of a pointer to a function when calling the function:

char *fred(); /* declare function returning a pointer to char */
char *(*J1m)(); /* a pointer to such a function */
char *s; /* 's' 1s a pointer to char */

J1m=fred: /* copy the address of the function */
s=fred(); /* call the function, assign the result to 's' */
s=J1m(); /* exactly the same effect */
s=(*J1m)(); /* alternative syntax */

The alternative syntax effectively implies that the parentheses operator () 
operates on the function as a whole - the object pointed to by the pointer. 
This is clearly not the case - fred and jim have the same type, as one can be 
assigned to the other, so if (*jim)() is needed, then (*fred)() would also be 
required. Unhappily, it is this alternative syntax that was used in the first 
edition of Kernighan and Ritchie's book, so it is likely that some C compilers 
will not accept the first form. The reference section of later editions of K & R 
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clearly shows that the first form is syntactically the correct form, but also 
states that in deference to older compilers the ANSI standard allows both 
forms. The Microware C compiler accepts both forms.

15.14.4 Pointers and Structures

Finally, structures and pointers to structures have often caused confusion. 
The syntax of C considers a structure to be a data object, exactly the same as 
a simple data object such as an int or a double. The structure name refers to 
the whole of the object. This is very different from an array, where the array 
name is a constant pointer to the first element of the array. The example 
below shows the declaration of a structure type, followed by the definition of 
a structure object of that type, and a pointer to such an object.

typedef struct { 
1nt 1tem_l; 
char *1tem_2;

} mystruct;
mystruct fred;
mystruct *jim;

/* declare the structure type */

/* the new type is 'mystruct1 */
/* ’fred' is an object of that type */
/* 'jim' is a pointer to such an object */

The assignment operator '=' will copy the whole of the structure. The 
structure name refers to the whole of the structure, not the address of the 
structure:

J1m=fred;
jim=4fred;

/* WRONG */
/* point at the structure */

jim now contains the address of the first byte of the structure. Because the 
type of the object pointed to by jim is known to the compiler, the object 
pointed to by jim can be used in expressions, and simple arithmetic can be 
used on jim:

mystruct george; 
george=fred;
george=*j1m;
j 1 m=j1m+1:

/* define a new object of that type */
/* copy the structure as a whole */
/* same effect */
/* add the size of one structure to 'jim' */

The elements of the structure can be accessed using both the structure name, 
and the pointer to the structure. However, the operators used are different:

fred.1tem_l=5;
jim->1tem_l=5;

/* set the first element to the value 5 */ 
/* same effect - different operator */

The declaration and definition of structures also causes some confusion. A 
simple structure type declaration has the following syntax:

struct henry {
1 nt 1tem_l;
char *1tem_2;

/* declare the structure type */
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This is a declaration of an object type struct henry - no storage is reserved 
at this time. The symbol henry is known as the structure tag - it identifies 
the structure type in subsequent statements. The structure type can be used 
to define objects:

struct henry x; /* 'x' 1s a structure */

The C language specification allows the two statements to be merged 
together:

struct henry { 
int 1tem_l: 
char *1tem_2;

} x.y.z:

/* declare the structure type */

/* 'x*, 'y'. and 'z' are structures */

struct henry a.b.c; /* and so are 'a', 'b', and 'c' */

The example above merges the declaration of the structure type struct 
henry with the definition of three structures of that type, x, y, and z. The 
second statement shows that the declared structure tag can still be used to 
define further objects of that type - a, b, and c. The structure tag can be 
omitted if only the merged form of the statement is to be used (further 
structures of that type cannot be defined):

struct {
1nt 1tem_l; 
char *item_2;

} x.y.z: /* 'x', 'y', and 'i' are structures */

As with any definition, a structure definition can be converted to the 
declaration of a new object type by prefixing it with the typedef keyword. 
Thus:

struct henry ( 
int 1tem_l: 
char *item_2;

) george;

declares a structure type struct henry, and defines a data object george 
which is a structure. Storage is reserved for george. However:

typedef struct henry ( 
1nt 1tem_l;
char *1tem_2;

) george;

declares a new type george. No storage is reserved at this time. Objects can 
be defined with that type (or by using the structure tag, here henry):

george a,b,c; /* 'a', 'b', and 'c' are structures */
struct henry x.y.z: /* 'x', 'y', and *z' are of the same type */

The structure tag can be omitted:
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typedef struct (
inti tem_l;
char *item_2;

} george;
george a,b,c; /* 'a', 'b'. and 'c' are structures */

However, if the structure is to contain pointers to other structures of the 
same type (for example, in a linked list), the structure tag is necessary, as the 
compiler will not see the type name until it has reached the end of the type 
definition, and C is designed to be compiled in a single pass:

typedef struct { 
int item_l; 
george *1tem_2; /* WRONG */

) george;

typedef struct henry (
1 nt 1tem_l;
struct henry *item_2; /* correct */ 

) george;

Note that in the above example struct henry and george are the same type, 
and can be used interchangeably.
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