
OS-9 INTERNAL STRUCTURE

CHAPTER 14

OS-9 INTERNAL STRUCTURE

OS-9 is a true multi-tasking operating system. Therefore it has
many resource allocation and management jobs to perform. To
keep track of resources, both allocated and free, it uses a number
of different data structures in memory. Also, because OS-9 is

aimed at a very wide range of applications, it has very few limitations on the
number of each type of resource it can manage. Therefore, to avoid wasting
memory, memory is dynamically allocated as required for these data
structures.

The purpose of this chapter is to identify all of the important data structures
used by the operating system, and to describe in detail all of the fields of the
principal structures. Because these structures determine all of the resource
control mechanisms of OS-9, an understanding of these structures gives a
complete understanding of how the operating system allocates and controls
all of the system resources.

The OS-9 kernel is written in assembly language. Therefore all of the data
structures have been defined in assembly language files. Microware has used
the technique of declaring all of the symbols in the structures as public
symbols, assembling the files to ROFs, and merging them to the library
'LIB/sys.l'. The make file to do this is provided by Microware in
'DEFS/makefile'.

This library is used by the linker when creating the kernel. For this reason,
these definitions files are absolutely definitive. They are not just descriptive,
but have actually been used to create the kernel. Microware supplies all of
these files with OS-9, in the 'DEFS' directory.

341

OS-9 INTERNAL STRUCTURE

File

sysglob.a

sysio.a

Structures defined

System Globals data structure.

Device Table, Interrupt Polling Table, and Path
Descriptor data structures.

iodev.a

scfdev.a

rbfdev.a

funcs.a

io.a

module.a

Device Static Storage structure for the kernel.

Device Static Storage structure for SCF

Device Static Storage structure for RBF

System call codes and error numbers.

Path Descriptor Options Section data structures.

Module header structures.

process.a Process Descriptor data structure.

Most of the dynamically allocated tables (arrays) used by the kernel are
dynamically extendible if the table becomes full. The kernel allocates a new
table twice the size of the old table, copies the old table to the first half of the
new table, and frees the old table's memory. This allows small tables to be
allocated initially, to conserve memory on small systems.

Some tables are not dynamically extendible. The size of each of these tables
is specified in the init configuration module, so the implementor can tailor
the table size to the system requirements. All of these non-extendible tables
relate to physical resources (such as devices) which cannot be dynamically
created, so the required table size is known when the computer is designed.

14.1 THE SYSTEM GLOBALS
The operating system must have some way of finding the data structures that
have been created. It does this through a root structure of which only one
instance exists, known as the System Globals. This structure contains
pointers to other structures, which in turn may contain pointers to other
structures, and so on. It is impossible to know the addresses of any of the
data structures in advance, as 0S~9 imposes no constraints on the system
memory map.

On coldstart there must be some mechanism, suitable for all systems, of
locating memory where the System Globals structure can be built. There
must also be a mechanism whereby the kernel can find the address of the
System Globals whenever a system call is made, or an interrupt occurs. OS-9
uses a fixed feature of the 68000 family of processors - the Reset Stack

342

OS-9 INTERNAL STRUCTURE

Pointer entry of the vector table. This is the first entry in the vector table,
which is situated at address zero in all 68000 systems and most other
systems. The higher members of the family have a Vector Base Register to
point to the vector table. This is set to zero when the processor is reset, and
most systems leave it unchanged. However, OS-9 for the 68020/030/040 does
fetch the pointer relative to the Vector Base Register, so it is compatible with
all configurations.

The Reset Stack Pointer is assumed to point to the middle of an 8k block of
RAM. This is a reasonable constraint on the implementor, as the Reset Stack
Pointer must point to some RAM, for the boot program to work. The upper
half is used to store the System Globals. The lower half is the initial stack for
the boot program. At the bottom of the 8k block is the OS-9 Exception Jump
Table, described in the chapter on Exception Handling (about 2.5k bytes).
Note that if the boot ROM uses the "CBOOT" code supplied by Microware,
the total size of this block may exceed 8k (the top part, pointed to be the
Reset Stack Pointer, is still 4k bytes).

Although 4k bytes is reserved for the System Globals, the structure itself is
not that big. This reservation allows for expansion of the System Globals
structure without modification to the boot program. The remainder is used
for the "system abort stack" (see the description of the D AbtStk field in the
System Globals below).

All operating system tables and memory structures are dynamically allocated
from free memory, using the F$SRqMem system call. Root pointers to tables
and linked lists of memory structures are held in the System Globals. The
System Globals structure is described in detail below.

14.2 THE OTHER SYSTEM MEMORY STRUCTURES
The following sections describe all of the principal memory structures used
by the kernel. In the structure description tables, the "size" field shows the
length of each item as T for a long word, 'w' for a word, and 'b' for a byte. If
more than one item is covered by one name - for example, an array - the
size letter is followed by the number of items. Figure 7 on the next page
shows the interconnections between the principal types of memory structure
used by OS-9. The structures contain pointers giving the base addresses of
other structures.

Even though not all types of structure are shown, the diagram is rather
complex! Operating system structures are shown as ordinary rectangles,
modules are shown as rectangles with rounded corners, and memory areas

343

OS-9 INTERNAL STRUCTURE

• Figure 7 - OS-9 Memory Structures

344

OS-9 INTERNAL STRUCTURE

whose structures are not completely defined by the kernel are shown as
shaded rectangles. The top and right part of the diagram shows the
structures used by the I/O system.

14.2.1 Process Descriptor

A process descriptor is allocated for each process. A process descriptor is 2k
bytes in size. Approximately the first Ik bytes contain the process descriptor
memory structure, for managing the process. The remainder is used for the
stack during system calls made by that process. When the process dies the
process descriptor memory is freed. The kernel keeps an array of addresses
of process descriptors, known as the Process Descriptor Table. The process
ID number is a direct index into this table.

The structure of the process descriptor is described in detail in the Process
Descriptor section of this chapter.

14.2.2 Path Descriptor

A path descriptor is allocated for each path. Note that duplications of a path
do not create a new path descriptor, only a new process local path number to
the same descriptor. A path descriptor is 256 bytes in size, cleared to zeros
when first allocated. The first 128 bytes are used for storing variables for
managing the path. The first part of this structure is common to all paths,
and is determined by the kernel. The remainder of the 128 bytes is for use by
the file manager appropriate to the particular device, and its structure varies
from one file manager to another. The other 128 bytes contain the "options
section", initially copied from the options section of the device descriptor
used to open the path. The structure of the options section is determined by
the file manager.

The kernel keeps an array of addresses of path descriptors, known as the
Path Descriptor Table. The "system path number" is a direct index into this
table. Note that there is a unique system path number for each open path,
but individual processes refer to their paths using "local path numbers",
which have a range from 0 to 31. When a process opens or duplicates a path
it is assigned the first free number in its range of local path numbers as a
reference to the path. This local path number is translated by the kernel
through a table in the process descriptor into the system path number that
uniquely identifies the path. When a path is closed, the process's local path
number is freed. When all duplications of the path have been closed, the path
descriptor memory is freed.

345

OS-9 INTERNAL STRUCTURE

The definitions for the path descriptor shown below are taken from the file
'DEFS/sysio.a'.

Offset Name Size Description
$000 PD_PD w System path number of this path.
$002 PD_MOD b Mode flags for the mode in which the file was opened

(read, write, execute, directory, non-sharable).
$003 PD_CNT b Number of local paths (duplications) open on this system

path. This byte field is now redundant, having been
replaced by the word field PD COUNT. However, the
kernel still maintains it, for backward compatibility.

$004 PD_DEV 1 Address of the device table entry for the device this path
is open on. This field forms the link between a logical
path and a physical device. The device table entry
contains the addresses of the file manager module,
device driver module, device descriptor module, and
device static storage for the device.

$008 PO_CPR w Process ID of the process currently making a system call
on the path. The kernel sets this field at the start of a
system call on this path, and clears it at the end of the
system call. If this field is zero, there is no system call
currently being executed on the path.

$00A PO_RGS 1 Address of the register stack frame of the process
making a system call on this path. This address is used
to read the parameters of the system call (they are
passed in the caller's registers), and to return results, by
modifying the register images in the stack frame.

$00E PD_BUF 1 Address of a data buffer. This field is not used by the
kernel. It is for communication between the file
manager and the device driver. For example, RBF puts
the address of the buffer to read or write in this field
before calling the device driver.

$012 PD_USER w 2 Group number and user ID of the process that opened
the path.

$016 PD_Paths 1 Address of the next path descriptor in the linked list of
paths open on the same device. The device static storage
contains the root pointer for this linked list.

$01A PD_COLINT w Number of local paths (duplications) open on this system
path. This field is set to one by the kernel when the path
is first opened, and incremented whenever a duplication
of the path is made (another local path number is
assigned to the same system path), either explicitly (by
the I$Dup system call) or implicitly (a child inheriting
paths from the parent when forked). When a local path
is closed this field is decremented. When it reaches zero

346

OS-9 INTERNAL STRUCTURE

Offset Name Size Description

$01C PD_LProc w

the path is actually closed, and the path descriptor
memory is de-allocated.
Process ID of the last process to have made a system call

$01E PD_ErrNo 1

on this path. This field is set at the same time as
PD CPR, but is not cleared when the system call
finishes.
For the private use of the file manager - used to store

$022 PD_SysGlob 1

the most recent error number during file manager
operations (used for errno in file managers written in
C).
For the private use of the file manager - used by file

$026 w 2

managers written in C to save the address of the System
Globals. The address of the System Globals is passed to
the file manager by the kernel in the aS register. File
managers written in C normally put the address of the
path descriptor in a6, as this is the static storage
address register assumed by the C compiler.
Reserved.

$02A b 86 For the private use of the file manager, as static storage

$080 PD-OPT b

associated with the path. The structure is defined by the
file manager writer.
Options section. The structure is defined by the file

128 manager writer. The kernel initializes this area with a
copy of the options section of the device descriptor the
path was opened on.

14.2.3 Module Directory

The module directory is an array of structures containing the address, link
count, header parity, and group identifier of each module present in memory.
The structure of each entry is shown below. It is taken from the file
'DEFS/module.a'. Modules are described in the chapter on OS-9 Modules,
Memory, and Processes.
Offset Name Size Description
$000 MD$MPtr 1 Address of the module.
$004 MD$Group 1 Module group identifier - the address of the first module

in the group.
$008 MD$Stat1c 1 Size of the memory area allocated to contain the module

group.

$00C MD$L1nk w Link count of the module.
$00E MD$MChk w Check word calculated from the module header bytes.

347

OS-9 INTERNAL STRUCTURE

14.2.4 Device Table

The device table is an array of structures, one for each device currently
active on the system (the device has had more "attaches" than "detaches"). A
device is identified by its device descriptor module, so separate device table
entries are created for different device descriptors, even if they refer to the
same physical device. Each entry contains the addresses of the appropriate
device descriptor, device driver, and file manager modules, plus the address
of the device static storage, and a device use count. The entry is deleted (the
use count, device descriptor address, and device static storage address are
cleared to zeros) when the use count goes to zero.

Paths are linked to physical devices by means of a pointer (PD_DEV) in the
path descriptor to the appropriate device table entry. The structure of a
device table entry is defined in the file 'DEFS/sysio.a'.

Offset Name S1 ze Description
$000 V$ORIV 1 Address of the device driver module.
$004 V$STAT 1 Address of the device static storage.
$008 V$DESC 1 Address of the device descriptor module.
$00C V$FMGR 1 Address of the file manager module.
$010 V$USRS w Current device use count.

The device table is not dynamically extendible. Its size is taken from the init
module.

14.2.5 Device Static Storage

A device static storage is an area of memory used to control a single physical
device interface. It may service multiple logical channels (for example, a
floppy disk controller controlling four floppy disk drives). The size and usage
of the device static storage is determined by the file manager and device
driver controlling the device.

A separate device static storage is allocated to each device table entry unless
both the device port address (in the device descriptor) and the device driver
are the same as in an existing entry. In that case the kernel assumes that the
new device descriptor is just another description of the same physical device
(an "alias"), so the kernel uses the same device static storage as in the
existing entry. The kernel clears a device static storage to zeros after
allocation. The memory of a device static storage is freed when all device
table entries referring to that device static storage have been deleted.

348

OS-9 INTERNAL STRUCTURE

The first part of the device static storage is the same for all devices. The
second part is defined by the file manager used to control the device. The
third part is defined by the device driver used to control the device. Because
the I/O system of OS-9 is tree structured (there is one kernel calling multiple
file managers, and each file manager may call multiple device drivers), the
size of the device static storage is finally determined by the linker when
creating the device driver module, adding the universal definitions to the file
manager definitions and the device driver definitions. The size of the device
static storage required is therefore set in the device driver module header
M$Mem field by the linker.

Note that despite the similarity in names, the device static storage is very
different from a process's static storage. It is a control structure associated
with the device, rather than a private store of variables for a particular
application. It does not have any space used for stack - the second half of the
process descriptor of the calling process is used for the stack during a system
call. System calls are effectively just system state subroutines executed by the
calling process.

The following table describes the first (universal) part of the device static
storage. The structure is defined in the file 'DEFS/iodev.a':

Offset Name Size Description
$000 V_P0RT 1 "Port address" - the address of the interface device. The

kernel copies this field from the M$Port field of the
device descriptor module when it allocates the device
static storage. The kernel makes no use of this field, and
it does not interpret the port address except to decide
whether to allocate a new device static storage, as
described above. File managers also do not use this field
- it is for the convenience of the device driver writer.

$004 V_LPRC w The process ID of the last process to use the device. The
kernel does not use this field. The SCF file manager sets
it to the ID of the calling process on each I/O request. It
may be used by SCF device drivers. For example, a serial
port device driver's receive interrupt routine will
typically send the "abort" signal to the last process to use
the device when the "quit key" character is received.

$006 V_BUSY w This field is not used by the kernel. It is typically used by
the file manager to prevent concurrent calls into the
device driver. The file manager checks this field before
calling the device driver. If it is not zero, it is the process
ID of the process currently making a call into the device
driver, and the file manager "I/O queues" the current
process on that process. Otherwise the file manager

349

OS-9 INTERNAL STRUCTURE

Offset Name Size Description
copies the caller's process ID into this field and calls the
device driver. When the device driver returns, the file
manager clears this field.

$008 V_WAKE w This field is for the private use of the device driver. It is

$00A V_Paths 1

usually used for communication between the interrupt
handler of the device driver, and the main body of the
device driver. If the device driver wants to wait for an
interrupt, it copies the process ID of the calling process
into this field and goes to sleep. On interrupt, the
interrupt handler checks this field. If it is non-zero, the
interrupt handler sends the wakeup signal to that
process, and clears the field to zero (as a verifiable
handshake to the main body of the device driver).
Address of the first path descriptor in the linked list of

$00E

$02E VJJSER

1 8

path descriptors of paths open on this device
(maintained by the kernel).
Reserved.
The file manager part of the device static storage starts
here.

14.2.6 Process Descriptor Table

This table is an array of the addresses of all existing process descriptors. The
process ID is simply an index into this table. If an entry is zero, no process
exists with that ID. Process IDs start with one (zero in a process ID field is
used to mean "no process"), so the first location of the process descriptor
table does not contain the address of a process descriptor. Instead, the first
word contains the current size of the table (in terms of long word entries),
and the second word contains the size of a process descriptor in bytes - 2048.
The second entry (long word) of the table points to the process descriptor of
the System Process, as this is always process 1.

14.2.7 Path Descriptor Table

This table is an array of the addresses of all existing path descriptors. A
system path number is simply an index into this table. If an entry is zero, no
path is open with that system path number. System path numbers start with
one (zero in a system path number field is used to mean "no path"), so the
first location of the path descriptor table does not contain the address of a
path descriptor. Instead, the first word contains the current size of the table
(in terms of long word entries), and the second word contains the size of a
path descriptor in bytes - 256.

350

OS-9 INTERNAL STRUCTURE

14.2.8 Interrupt Polling Table

This is an array of structures, one for each hardware interrupt handler
routine currently installed. The System Globals contains 199 pointers, each
of which is (if not zero) a root pointer to a linked list of these structures.
Therefore there is one such linked list for each interrupt vector on which one
or more interrupt handler routines has been installed. Interrupt handlers are
installed using the F$IRQ system call.

The interrupt polling table is not dynamically expandable - its size is set by
an entry in the init module. Each entry is 18 bytes long, and has the
following structure (defined in the file 'DEFS/sysio.a'):

Offset Name

$000 QSLINK

$004 Q$SERV

$008 Q$STAT

$00C Q$POLL

$010 Q$PRTY

$011

S1 ze Description
1 Pointer to the next entry in the linked list for this vector

number.
1 Address of interrupt handler routine.
1 Address of interrupt handler's static storage - normally

the device static storage. This field is not checked or
used by the kernel, except to identify the entry when it
is to be deleted, and to pass the static storage address to
the interrupt handler.

1 Port address. This field is not checked or used by the
kernel, except to pass the port address to the interrupt
handler.

b Polling priority. An entry with a low polling priority
number precedes an entry with a higher priority
number, and so is called first to service an interrupt on
that vector. A priority of zero means that the entry must
be the only one on this vector.

b Reserved.

14.2.9 Event Table

This is an array of structures, one for each event currently in existence.
Events are created (and maintained) by the F$Event system call. Each entry
contains the event name, event number, the event's current value, and the
link count of the event.

The event table is dynamically extendible. Its initial size is set by an entry in
the init module - it is usually zero. Each entry is 32 bytes long, and has the
following structure:

351

OS-9 INTERNAL STRUCTURE

Offset Size Description
$000 w Event number.
$002 b 12 Event name (null terminated if not 12 bytes long).
$00E 1 Event value.
$012 w Wakeup increment.
$014 w Signal increment.
$016 w Event link count.
$018 1 Address of process descriptor of first process waiting on the event - start

of linked list of process descriptors.
$01C 1 Address of process descriptor of last process waiting on the event.

The position within the table is called the event index. The first structure is
index zero, the second is index one, and so on. The event ID that is returned
by a call to create or link to an event is a long word - the high word is the
event number, the low word is the event index. The kernel keeps a record of
the last event number assigned, in the high word of the D_EvID field in the
System Globals, initially zero. The kernel increments this word in the System
Globals before using it to create the event ID for a new event.

The combination of event number and index as the event ID gives a high
degree of confidence that a program cannot accidently reference an event
that has been deleted (the event ID will not match any existing event), while
maintaining the speed of the event functions, which internally use the event
index.

14.2.10 Service Dispatch Tables

The operating system calls are customizable - existing handler functions can
be replaced by new handlers, and new system calls can be defined. This
feature is provided through the dispatch tables, which contain the addresses
of the system call handler functions. There are two tables - the system
dispatch table, and the user dispatch table, for calls made from system state
and user state respectively.

Each table consists of 512 long words. The first 256 long words are the
addresses of the handler functions for each of 256 possible system call codes.
The remaining 256 long words are the addresses of the (optional) private
static storage for each of the handler functions. System call handler functions
are installed by the F$SSvc system call, as described in the chapter on
Exception Handling.

352

OS-9 INTERNAL STRUCTURE

14.3 SYSTEM GLOBALS STRUCTURE
The System Globals structure is the root of all information in the system.
Starting from this structure (whose address is held at memory location zero)
all other memory structures can be located. The System Globals also contains
system-wide variables, and system constants defined at coldstart. The
System Globals structure is defined in the file 'DEFS/sysglob.a'. This section
describes the function of each field (under OS-9 version 2.4).

Fields in the System Globals can be read directly by operating system
components, or indirectly by user state programs using the F$SetSys system
call (or _getsys() C library function). User state programs can change certain
locations, again by using the F$SetSys system call, (or the _setsys() C
library function). This technique must be used, rather than writing directly
to the System Globals structure, as the kernel may need to take additional
action when certain fields are altered. This is especially true for the fields
that modify the behaviour of the process scheduler, as described in the
chapter on Multi-tasking.

The table below shows the System Globals structure. The symbol names are
defined in the file 'sysglob.a'. The named items are not necessarily
contiguous. Microware has reserved several fields for future use, while some
fields are skipped to keep word and long word fields on even addresses, and
some fields are historical relics (from previous versions of OS-9) that are no
longer used.

Offset Name Size Description
$000 D_ID w Set by the kernel to the module sync code $4AFC after

coldstart has finished. If set to $6F6B (ASCII "ok"), the
kernel does not check module CRCs during coldstart,
effecting a "warm start".

$002 D_NoSleep w Set non-zero to prevent the system process from
sleeping.

$020 D_Init 1 Set by the kernel to the address of the configuration
module init, to speed access.

$024 D_Clock 1 Set by the kernel to the address of its clock tick handler
routine. The clock driver calls this routine every tick
interrupt.

$028 D_TckSec w Set by the clock driver to the number of ticks per
second.

$02A 0_Year w The current year (for example, 1993). This field and the
following month and day fields are not dynamically
maintained by the kernel. They are updated only when a

353

OS-9 INTERNAL STRUCTURE

Offset Name Size

$02C D_Month b

$02D D_Day b

$02E D_Compat b

$02F D_68881 b

$030 D_Julian 1

$034 D_Second 1

$03A D_IRQFlag b

$03B DJnkIRQ b

$03C D_ModD1r 1 2

$044 D_PrcDBT 1

$044 D_PthDBT 1

$04C D_Proc 1

Description
program requests the current date and time, using the
F$Time system call.
The current month (1 to 12).
The current day in the month (1 to 31).
This is the first of two fields of bit flags used to modify
the kernel behaviour to maintain the behaviour of
previous versions of OS-9, or to cope with unusual
hardware configurations (see below).
Floating Point Unit type (68020/030/040 systems only)

0 no FPU
1 68881
2 68882

40 68040
Julian day number - maintained by the kernel's tick
handler routine. See the chapter on OS-9 System Calls
for a full description of Julian dates.
System time, as seconds left until midnight - maintained
by the kernel's tick handler routine. Held in this unusual
format to speed up the tick handler, which needs only to
decrement this field and test for zero (new day).
Kernel flag - currently servicing an interrupt. This field
is initialized to $FF on coldstart. On entiy to the
kernel's interrupt handler the field is incremented - if it
is now zero, the stack pointer register is set with the
value in the D SysStk field, so switching to the
"interrupt stack" if an interrupt occurs unless an
interrupt is already being serviced. On exit from the
kernel's interrupt handler this field is decremented.
The number of times an unknown interrupt has
occurred in a row. If no interrupt handler acknowledges
ownership of an incoming interrupt, the kernel
increments this field. If an interrupt is handled
successfully the kernel clears this field. If the field
increments to zero (count of 256), the kernel masks
interrupts to the level of the interrupt that cannot be
handled. This mechanism is attempts to cope with
hardware problems or hardware configuration errors.
Address of the module directory, and address of end of
module directory memory plus one (to speed up module
directory searches).
Address of the Process Descriptor Table.
Address of the Path Descriptor Table.
Address of the Process Descriptor of the Current

354

OS-9 INTERNAL STRUCTURE

Offset

$050

$054

$058

$05C

Name Size

D_SysPrc 1

D_T1cks 1

D_FProc 1

D_AbtStk 1

$060 D_SysStk 1

Description
Process. The Current Process is the process currently
executing. A system call routine will use this field to gain
access to the process descriptor of the calling process.
The Current Process is not in the Active Queue.
Address of the System Process Descriptor. The System
Process (always process 1) is woken by the kernel's tick
handler. Its function is to wake up processes in timed
sleep, and to send alarms to processes.
Ever incrementing tick count. Indicates the time since
coldstart. Useful for timing intervals.
Address of the process descriptor of the process whose
context is in the FPU registers. The kernel avoids
unnecessary saving and reloading of the FPU registers
(the FPU context can be very large) if other processes
have not used the FPU (their FPU context shows "idle").
System state abort stack pointer. This is intended to
allow a graceful abort from a bus error within an
interrupt handler. The abort stack is the remaining
memory after the System Globals structure up to the 4k
bytes reserved for the System Globals. On coldstart this
field is initialized to point to the last long word of the
abort stack ($0FFC from the start of the System
Globals). The address of the kernel’s bus error handler
function is written to that last long word of the abort
stack. On entry to the kernel's interrupt handler the
kernel decrements this field by 4 (allocating a long word
on the abort stack), and writes its current (interrupt)
stack pointer minus 4 to this long word pointed to by the
abort stack pointer. The kernel then makes a subroutine
call to the device driver's interrupt handler. Therefore
during the interrupt handler of a device driver this field
points to a recovery stack pointer value which can be
loaded into the system stack pointer, after which an rts
instruction will to return to the kernel. On exit from the
kernel's interrupt handler the kernel increments this
field by 4, so ditching the saved interrupt stack pointer.
Apart from maintaining this field as described, the
kernel does not use it itself, even within its bus error
handler.
Address of the stack memory to use during interrupts.
During the kernel coldstart this field is initialized to the
address of the System Globals, so the interrupt stack is
the memory below the System Globals. Once the kernel
has linked to the init module it uses the "size of
interrupt stack" field to allocate a separate area of
memory, whose top address plus one is placed in this

355

OS-9 INTERNAL STRUCTURE

Offset Name Si ze

$064 D_SysROM 1

$068 D_ExcJmp 1

$06C D_TotRAM 1

$070 D_M1nBlk 1

$07C D_BlkS1z 1

$080 D_DevTb1 1

$088 D_AutIRQ2 1 7

$0A4 D_VctIRQ 1
192

$3A4 D_SysDis 1

$3A8 D_UsrD1s 1

$3AC D_ActivQ 1 2

$3B4 D_SleepQ 1 2

$3BC D_Wa1tQ 1 2

$3C4 D_ActAge 1

$3C8 O_MPUTyp 1

Description
field (push down stack). The default value for the size of
this stack when creating the init module is Ik bytes.
Boot ROM execution entry point - the address of a
branch table in the boot ROM. This gives access to the
non-interrupt driven input/output functions for the
system console, which may be useful for announcing
errors from within interrupt handlers.
Address of the Exception Jump Table.
Total RAM found by the boot program.
Process minimum allocatable block size - the minimum
size of memory that can be allocated and freed by the
software memory management functions. Memory is
always allocated in multiples of this value (currently 16).
System minimum allocatable block size - the minimum
size of memory that can be managed by the Memory
Management Unit, if present, otherwise a default value
(currently 256).
Address of the Device Table.
68070 on-chip I/O autovector interrupt polling table
root pointers. The 68070 processor has on-chip
interrupt sources not present in other members of the
68000 family.
Vectored interrupt polling table root pointers. The
68000 family supports vector numbers 64 to 255. The
kernel subtracts 64 from the vector number to form an
index into this table.
Address of the system state service dispatch table.
Address of the user state service dispatch table.
Active process queue pointers. The address of the first
and last process descriptors in the linked list of process
descriptors of active processes. These are processes that
are requesting processor time (but excluding the current
process - the process currently executing).
Sleeping process queue pointers - the linked list of
processes in timed and untimed sleep. This list is
ordered by time before wakeup, with the untimed
sleeping processes at the end of the list.
Waiting process queue pointers - the linked list of
processes waiting for a child process to die.
Active queue age. This is the decrementing "system age"
used in the management of process scheduling.
Microprocessor in use, as an integer

356

OS-9 INTERNAL STRUCTURE

Offset Name Si ze

$3CC D_EvTbl 1 2

$304 D_EvID 1

$3D8 D_SPUMem 1

$3DC D_AddrL1m 1

$3E0 D_Compat2 b

$3E1 D_SnoopD b

$3E2 D_ProcSz w

$3E4 D_PolTbl 1 8

$404 D_FreeMem 1 2

Description
(68000, 68010, 68020, 68030, 68040, 68070, 68300).
Address of event table and address of end of event table
memory plus one (to speed up event table searches).
Last event number used. Only the high word of this field
is used. Initially set to zero, this word is incremented
before an event is created. It is used as the high word of
the event ID of the event created (the low word of the
event ID is the index into the event table for the event
structure used for the new event).
Address of the static storage for the System Security
Module. If this field is zero, inter-task memory
protection is not in use (SSM is not active).
Highest memory address found during startup (both
RAM and ROM).
This is the second of two fields of bit flags used to
modify the kernel behaviour to maintain the behaviour
of previous versions of OS-9, or to cope with unusual
hardware configurations (see below).
The kernel sets this field non-zero if all processor
memory data caches are coherent (“snoopy") or no data
caches exist. That is, the caches do not need flushing
after another bus master (for example, a DMA
controller) has written to memory. The internal caches
of a 68040 are normally snoopy. Other caches are
usually not snoopy.
The size of a process descriptor (currently 2k bytes).
This value should be used to calculate the size of the
system state stack, if system state stack checking code is
being written.
Autovectored interrupt polling table root pointers. The
68000 family supports 7 autovectors (one for each
interrupt level). The autovector number is 24 plus the
interrupt level of the incoming interrupt, 1 to 7. The
kernel subtracts 24 from the vector number to generate
an index into this table. The first location is therefore
never used (OS-9 does not provide support for the
"Spurious Interrupt" exception).
Address of the first and last entries in the linked list of
memory area descriptors in the memory colour node
table. As there is no system call to dynamically introduce
new memory areas to the system, the colour node table
(built at coldstart) is never changed.

357

OS-9 INTERNAL STRUCTURE

Offset Name Si ze Description

The next three fields are not currently used. They were intended for use in a
multi-processor version of OS-9:

$400 D-IPID w Inter-processor identification number.

$410 D_CPUs 1 Address of the array of processor descriptor list heads.

$414 D_IPCmd 1 2 Start and end addresses of the inter-processor command
queue.

The next three fields are used only by the F$CCtl system call installed by the
syscache kernel customisation module (described in the chapter on OS-9 System
Calls):

$764 D_CachMode 1 68020/68030/68040 Cache Control Register current
setting in abstracted form.

$768 D_D1sInst 1 Instruction cache disable request depth - permits nested
calls to disable the instruction caches. If non-zero, the
instruction caches are currently disabled.

$76C OJisData 1 Data cache disable request depth - permits nested calls
to disable the data caches. If non-zero, the data caches
are currently disabled.

$770 D_C1kMem 1 Address of a clock tick thiefs static storage. By
substituting the address of its own tick handler in the
field D_Clock, an operating system component can be
called on every tick interrupt. Its handler must finish
with a jump to the kernel's tick handler, whose address
was saved from the original value in D_Clock. This
requires that the handler have some static storage. The
address of that static storage can be written here.
System state alarms make this technique redundant for
almost all purposes.

$774 D_T1ck w Number of ticks remaining in the current second. This
field is initialized by the kernel from the field
D_TckSec, and is decremented by the kernel's tick
handler. When it reaches zero the tick handler
re-initializes the field, and decrements the field
DSecond.

$776 D_TSl1ce w Ticks per time slice (copied by the kernel from the init
configuration module).

$778 D_Slice w Number of ticks remaining in the current time slice. The
kernel initializes this field from D TSlice when it starts
a time slice for a process. The kernel's tick handler
decrements this field. When the field reaches zero, the
tick handler sets the "timed out" flag in the process
descriptor of the current process (see D Proc).

$77C D_Elapse 1 Number of ticks remaining before the system process
should be woken. When a process requests a timed sleep

358

OS-9 INTERNAL STRUCTURE

Offset Name

$780 D_Thread

$788 D_AlarTh

$790 D_SStkLm

$794 D_Forks

$798 D_BootRAM

$79C D_FPUS1ze

$7A0 D_FPUMem

$7A4 D_IOGlob

Si ze Description
or an alarm signal, the kernel determines whether it will
be the first process to need a wakeup or a signal. If so, it
sets this field to the number of ticks to elapse before the
system process needs to take action. The kernel's tick
handler decrements this field (if it is not zero), and
wakes up the system process when it reaches zero. The
system process performs the necessary wakeup(s) and
sends the necessary signal(s), and then recalculates the
time to the next wakeup or alarm, setting this field
accordingly (or to zero if none).

1 2 Addresses of the first and last thread queue linked list
entries in the thread list, for the list of immediate or
absolute time alarm signals. The kernel makes an entry
in this list (allocating a thread structure from system
memoty) when a process requests an alarm signal by an
absolute time, or which the kernel calculates requires an
immediate signal. The entries are linked, ordered by the
time of the alarm.

1 2 Addresses of the first and last thread queue linked list
entries in the thread list, for the list of relative time and
cyclic alarm signals. The kernel makes an entry in this
list (allocating a thread structure from system memory)
when a process requests an alarm signal by a relative
time, or at repeating intervals. The entries are linked,
ordered by the time of the alarm.

1 Interrupt stack memory base address.
1 Number of processes in existence.
1 Total amount of RAM found by the boot program.
1 Maximum size of FPU saved state frame.
1 Address of static storage for the FPU emulator (for

68040).
b This area of memory is for use by
256 implementation-dependent operating system

components, such as device drivers. Microware have
reserved the first 32 bytes. This memory should only be
used for variables that can only occur once in the
system, such as images of processor board write-only
registers. The structure of this memory is defined in
'DEFS/ioglob.a', which the implementor should edit as
necessary (and then remake the 'LIB/sys.l' library).

The following three locations are used to modify the behaviour of the kernel's
process scheduler (see the chapter on Multi-tasking). They can be altered by means
of the F$SetSys system call (and must not be modified directly):

$8A6 D_M1nPty w Minimum process priority - processes with a lower

359

OS-9 INTERNAL STRUCTURE

Offset Name Size Description
priority receive no processor time.

$8A8 D_MaxAge w Maximum process priority - processes with a higher
priority execute strictly in priority order. Processes with
a lower priority are scheduled normally, but receive no
time if a high priority process is active.

$8AA D_S1eze w (sic) If this field is not zero it is assumed to be a process
ID. The kernel will not give time to any other process
until this field is changed.

$8AC D_Cigar 1 The bytes of this field contain version numbers for the
more important of the memory structures:

$8AC b System Globals version - currently 1
$8AD b Process descriptor version - currently 1
$8AE b Module directory entry version - currently 1
$8AF b Module header version - currently 1
S8EC D_SysDbg 1 Address of the entry point of the ROM based debugger.

A user program (such as the 'break' utility) can cedi the
ROM based debugger using the F$SysDbg system call.
This field is initialized during the kernel coldstart to the
"boot entry point" address passed by the boot program,
plus 16.

$8F0 D_DbgMem 1 The System State Debugger program uses this field to
save the address of its static storage. A non-zero value
indicates that the debugger is active.

$8F8 D_Cache 1 Address of the RBF disk cache buffer header. A
non-zero value indicates that disk caching is active.

The D_Compat and D_Compat2 fields contain bit flags to modify the
behaviour of the kernel, to retain compatibility with earlier versions of OS-9,
and to cope with hardware peculiarities. The bit flags of D_Compat are:

Bit Meaning when set

0 Save all processor registers on interrupt (instead of just a
subset).

1 Don't use the 68000 stop instruction to wait for interrupt
when no processes are active - loop in software.

2 Don't implement the "sticky modules" feature.

3 Don't enable 68030 cache burst mode (used by the
syscache kernel customization module).

•4 Fill memory with a pattern when allocated or freed.

360

OS-9 INTERNAL STRUCTURE

5 Don't attempt to start the clock driver during kernel
coldstart (otherwise the kernel executes the F$STime
system call with a date of zero, to start the clock ticks and
read a battery-backed time-of-day clock if one exists).

The bit flags of D_Compat2 are:

Bit Meaning when set

0 External instruction cache is snoopy or non-existent.

1 External data cache is snoopy or non-existent.

2 Processor instruction cache is snoopy or non-existent.

3 Processor data cache is snoopy or non-existent.

7 Kernel should not disable data caching during I/O system
calls.

A snoopy (or coherent) memory cache is one that watches bus activity while
another bus master is active. It automatically updates (or invalidates) its
contents if the bus master writes to a memory location that is also held in the
cache, and automatically inhibits the memory and supplies the cached value
if the bus master tries to read a memory location that is "stale" because a
"dirty" location in the cache has not yet been flushed to memory.

If the data caches are not snoopy (or non-existent), then device drivers that
control devices with DMA must flush the caches before writing to the device
or after reading from the device.

14.4 PROCESS DESCRIPTOR STRUCTURE
The Process Descriptor contains all the variables needed to control a process
and record its resource allocations. It also contains the memory to be used as
stack space during system calls made by the process. This removes the need
for the program to reserve space in its stack for use by the operating system.
The Process Descriptor structure is defined in the file 'DEFS/process.a'. This
section describes the function of each field (under OS-9 version 2.4).

Offset Name Size Description
$000 P$ID w Process ID of this process.
$002 P$PID w Process ID of parent process. This field is zero if the

parent has died.

361

OS-9 INTERNAL STRUCTURE

$01C

$01E

Offset

$004

$006

$008

$00C

$010

$014

$018

$01A

Name Size Description
P$SID w Process ID of next sibling process - forms a chain of

processes that are children of the same parent. This
field is zero if this process is the last in the chain for this
parent (or it is the only child of the parent).

P$CI D w Process ID of the first child process. The P$SID field of
the first child process holds the process ID of the second
child process, and so on. In this way the kernel keeps
track of all the children of a process. This field is zero if
the process has no children.

P$sp 1 System stack pointer, saved on the last system call made
from user state, after the processor registers have been
stacked. During a system call this field points to a stack
frame of the processor registers of the calling user state
program, while the a5 register points to the stack frame
of the caller, whether system or user state.

P$usp 1 User stack pointer, saved on the last system call made
from user state. During a system call this field points to
the stack of the calling user state program.

PfMemSiz 7 Not used.

P$User w 2 User group number and user ID of the user who forked
the process (may be changed using the F$SUser system
call).

P$Pr1or w Process priority.
P$Age w Process "age”. This field is not used by the kernel, but is

calculated when a copy of the process descriptor is
requested using the F$GPrDsc system call. If the
process is not active it is set equal to the process's
priority. Otherwise it is set equal to the process's
scheduling constant minus the current system age
(D_ActAge), which is an indication of the number of
processes that have been put into the active queue
(including rescheduling the current process when its
time slice expires) since the process itself was put in the
active queue. If the calculated value exceeds 10000 it is
assumed to be "unreasonable", and a value of -1
($FFFF) is set. If the "maximum age" field in the System
Globals D MaxAge is not zero, and the calculated age of
this process is greater than or equal to the "maximum
age", the age is set to the maximum age minus one.
None of this affects the scheduling of the process.

P$State w Only the high byte of this field is used. This byte is a set
of bit flags indicating the current state of the process.
The flags are described below.

P$Task w Process "task number" - for use by an SSM controlling
an MMU that can store multiple memoiy maps at the

362

OS-9 INTERNAL STRUCTURE

Offset Name Size Description
same time.

$020 P$QueuID b This field contains an ASCII printable character,
indicating which queue (linked list) the process
descriptor is currently in. The possible values are listed
below.

$021 P$SCal1 b The function code of the last system call executed in
user state.

$022 P$Baked b A kernel check flag - non-zero if the process was
created by the F$Fork system call.

$024 P$DeadLk w ID of the process to which an I/O deadlock has been lost.
$026 P$S1gnal w Signal code of pending signal. This is the code of the

most recently received signal. (Note: prior to OS-9
version 2.4, this was the oldest signal, that is, the. signal
to be handled first.) This field is zero if there is no signal
pending.

$028 P$S1gVec 1 Address of process's signal handler function. If this field
is zero, the process has not installed a signal handler
function - the kernel will kill the process if a signal is
received.

$02C P$S1gDat 1 Address of the data space of the signal handler function
- normally the process's static storage.

$030 P$QueueN 1 Address of the process descriptor of the next process in
the queue (linked list). This field and the following field
provide the links for a doubly linked list of process
descriptors. Depending on the value in P$QueuID, this
will be the active queue, the sleeping queue, the waiting
queue, or an event queue.

$034 P$QueueP 1 Address of the process descriptor of the previous process
in the queue.

$038 P$PModul 1 Address of the program module that was forked for this
process.

$03C P$Except 1 10 Addresses of the process's handler functions for the
"hardware exceptions" (bus error, address error, illegal
instruction, and so on). If a field is zero, the process has
not installed a handler for the corresponding exception.
In that case, the kernel will kill the process if that
exception occurs while the process is executing in user
state. See the chapter on Exception Handling.

$064 P$ExStk 1 10 Addresses of the static storage areas in which to build a
stack frame of the processor registers if a "hardware
exception" occurs. If a field is zero, the kernel will build
the stack frame on the process's user state stack when
the corresponding exception occurs.

363

OS-9 INTERNAL STRUCTURE

Offset Name Size

$08C PtTraps 1 15

$0C8 PtTrpMem 1 15

$104 PJTrpSiz 1 15

$140 P$ExcpSP 1

$144 P$ExcpPC 1

$148 P$DIO b 32

$168 P$Path w 32

Description
Addresses of the trap handler modules installed to
handle trap #n instructions 1 to 15. If a field is zero,
the process has not installed a trap handler module
(using the system call F$TLink) for the corresponding
trap #n instruction.
Addresses of the static storage memory areas allocated
for the trap handler modules. If a field is zero, the trap
handler's module header shows the trap handler needs
no static storage, or no handler is installed for that trap
#n instruction.
Sizes of the static storage areas allocated for the trap
handler modifies.
System state recovery stack pointer - value to place in
the system stack pointer if a "hardware exception"
occurs while this process is executing in system state.
Note: if a hardware exception occurs while an interrupt
is being serviced, the kernel regards this as a fatal error,
and reboots the system.
Address of the system state hardware exception handler.
The kernel causes execution to divert to this address if a
"hardware exception" occurs while the process is
executing in system state. If a hardware exception
occurs while the process is executing in system state and
this location is zero, the kernel regards this as a fatal
error, and reboots the system. At the start of a system
call the kernel initializes this field and P$ExcpSP to
values that simply cause an early termination of the
system call, with an abort of the process. At the end of a
system call the kernel restores the previous values
(usually zero). An operating system component (such as
a device driver) can substitute its own values during a
call, in order to take more appropriate action on
exception.
An area in which to store information about the current
data and execution directories. The first 16 bytes are for
information about the current data directory. The other
16 bytes are for information about the current execution
directory. In each area the kernel uses the first 4 bytes
to store the address of the device table entry for the
device on which the directory resides, and reserves the
following two bytes. The remaining 10 bytes are for use
by the file manager controlling the device, as shown in
the file 'DEFS/sysio.a'.
Table of system path numbers for open paths. When the
process opens (or inherits) a path it is given a local path
number in the range 0 to 31. The local path number is

364

OS-9 INTERNAL STRUCTURE

Name Si ze DescriptionOffset

$1A8

an index into this table, giving the system path number
for the path, which identifies the appropriate path
descriptor. If a field is zero, the process does not have a
path open with that local path number.

PSMemlmg 1 32 Table of addresses of memory areas allocated by the
process, including the static storage ("primary data
area"), and memory allocated by user state trap handlers
(excluding the static storage of the trap handlers). When
the process makes a memory allocation request, the
kernel saves the address of the allocated memory in this
table. The process can have up to 32 outstanding
memory allocations at any one time. If a table entry is
zero, there is no memory allocation corresponding to
that table entry. The table is always ordered by memory
address (low addresses first). If an entry is erased
(because the memory is returned), the entries above are
moved down, so the table has no "holes". If two or more
allocated areas are contiguous, they are coalesced into
one table entry.

$228 P$BlkS1Z 1 32 Table of sizes of allocated memory areas. The size is the
actual size allocated from the system free memory pool
as the result of a memory request, and so is always a
multiple of the system minimum allocatable block size.
The area may contain free fragments that have not yet
been given to the program, which is able to allocate
memory in multiples of the process minimum allocatable
block size (which is smaller than the system minimum
allocatable block size). The kernel keeps track of these
fragments - which belong to the process, but have not
yet been allocated to a program request - through the
linked list rooted in P$frag.

The next three fields are used only if the process was created by the F$DFork
system call (a debugged process). The process is then under the control of its parent
(the debugger):

$2A8

$2AC

$2B0

P$DbgReg 1 Address of the register stack frame buffer in the parent's
static storage. The kernel copies the process's registers
to this stack frame after an F$DFork or F$DExec
system call, and sets the process's registers from this
stack frame when an F$DExec system call is made by
the parent.

PSDbgPar 1 Address of the parent's process descriptor. If this field is
zero, the process is not a "debugged" process.

PSDbglns 1 Total number of instructions executed in user state so
far within an F$DExec system call from the parent.
This field is not used if the FSDExec call specified "full
speed" execution.

365

OS-9 INTERNAL STRUCTURE

Module to contain the process's memory map as required
for the MMU. This field is zero if the SSM is not used.

Offset Name Si ze Description

$2B4 PSUTicks 1 Number of tick interrupts that have occurred while this
process was the current process in user state.

$2B8 P$ST1cks 1 Number of tick interrupts that have occurred while this
process was the current process in system state.

$2BC PSDatBeg 1 Date (in Julian form) when the process was forked.
$2C0 P$T1mBeg 1 Time (seconds since midnight) when the process was

forked.
$2C4 P$FCalls 1 Number of system calls (other than I/O system calls)

made in user state.
$2C8 PSICalls 1 Number of I/O system calls made in user state.
S2CC PSRBytes 1 Number of bytes read (ISRead and ISReadLn) in user

state without error.
$2D0 PSWBytes 1 Number of bytes written (I$Write and I$WritLn) in

user state without error.
The next two fields are used in building a queue of processes waiting for an I/O
resource (such as a path or device). The kernel or file manager, on finding that a
requested I/O resource is already in use by another process, will add this process to
the I/O queue on that process using the FSIOQu system call. When the kernel is
finishing an I/O system call, it checks the process descriptor to see if it has an I/O
queue (PSIOQN is not zero). If so, it wakes up the first process in the queue (the
process ID in PSIOQN).

The queue is ordered by the scheduling constants of the processes at the time they
were put in the queue. A process being put in the queue is inserted after other
processes with the same or greater scheduling constants (see the chapter on
Multi-tasking).

$2D4 PSIOQP w The process ID of the previous process in the I/O queue
this process is waiting in. If this field is zero, this
process is not I/O queued.

$206 PSIOQN w The process ID of the next process in the I/O queue. If
the PSIOQP field is zero, this process has the I/O
resource, and this field is the process ID of the process
that will be woken when the resource becomes free.

$2D8 Pt Frags 1 2 Not used (historical, from before coloured memory).

$2E0 PSSched 1 Scheduling "constant". This field is calculated when the
process is put into the active queue. It is the sum of the
system age (DActAge) at that time and the process's
priority. It determines the position of the process in the
active queue. See the chapter on Multi-tasking for a full
description.

$2E4 PSSPUMem 1 Address of memory allocated by the System Security

366

OS-9 INTERNAL STRUCTURE

Offset Name Size Description

The next two fields are set by the kernel as part of the F$DExec system call made
by the debugger to request that the process execute one or more instructions. These
fields are not used if the process is not a "debugged" process (created by F$DFork).

$2E8 P$BkPtCnt 1 Number of breakpoints set. The F$DExec system call
specifies a number of breakpoints for the kernel to set in
the program being debugged.

$2EC P$BkPts w 16 If "full speed" execution was requested by an F$DExec
system call, the breakpoints are set by the kernel by
writing an illegal instruction at each breakpoint location.
The instruction word that was at each breakpoint
location is saved in this table by the kernel, and restored
when the program halts (breakpoint, exit, or hardware
exception). Otherwise (trace mode execution) the kernel
sets the process into trace mode, so the process halts
after each instruction with a trace exception. The kernel
then compares the process's program counter with each
breakpoint address in the list specified in the F$DExec
call.

$30C P$Acct 1 8 This space is available for use by a "user accounting
module". A user accounting module is a kernel
customization module that is called whenever a process
is forked or terminated, to keep track of the use of
resources by users.

$32C P$Data 1 Address of the process's static storage ("primary data
area") allocated by the kernel when the process is
forked. Also the first entry in the P$MemImg table. It
is this memory area that is expanded (or contracted) by
the F$Mem system call.

$330 P$DataSz 1 Size of the process's static storage, including the stack,
but excluding the parameter string.

$334 P$FPUSave 1 Address of the memory area (allocated when the process
is forked) in which to save the register frame and
context of the FPU when the process ceases to be the
current process. If the system does not have an FPU,
this field is zero.

The next two fields have a similar purpose to the fields P$Except and P$ExStk.
They are used for the additional "hardware exceptions" that can be generated by the
FPU. If the system does not have an FPU, these fields are not used.

stack frame of the processor registers if an "FPU
exception" occurs. If a field is zero, the kernel will build
the stack frame on the process's user state stack when

$338 P$FPExcpt 1 7 Addresses of the process's handler functions for the
"FPU exceptions" (divide by zero, not a number, and so
on).

$354 P$FPExStk 1 7 Addresses of the static storage areas in which to build a

367

OS-9 INTERNAL STRUCTURE

Offset Name S1ze

$370 PSSfgLvl b

$371 P$SigFlg b

$372 P$Sigxs w

$374 P$S1gMask 1

$378 P$S1gCnt 1

$37C P$S1gQue 1

$380 P$DefS1g 1 4

Description
the corresponding exception occurs.
Signal mask nesting level. If this field is non-zero,
signals are masked for the process. In this case, if a
signal is received the process is still made active (if it
was not already), and the signal is put in the signal
queue, but the process's signal intercept handler is not
called. When the process clears this field (using the
F$SigMask system call), the signal intercept handler is
immediately called for each pending signal. This field
can be incremented, decremented, or cleared by the
F$SigMask system call.
This field is a set of bit flags for the signal mechanism.
Currently, only bit 7 is used. It is set when the process
receives a signal while active, and cleared when the
process goes to sleep, or returns to user state. If this flag
is set, a process can go to sleep even if a signal is
pending. This allows a system call to go to sleep, waiting
for a signal from (for example) an interrupt service
routine, even though another signal is pending.
Number of free entries in the signal queue.
This field is a set of 32 bit flags, each bit (0 to 31)
corresponding to the signal code of the same number. If
the bit is set, then a signal of that code sent to the
process is ignored - the process is not woken, and the
signal is not queued. Signals 0 (kill) and 1 (wakeup)
cannot be filtered in this way. Due to the coding of the
F$Send system call, signal code 32 will be ignored if bit
zero of this field is set. There is no system call to alter
this field.
Number of signals pending.
Address of the signal queue element containing the next
signal to process (the oldest pending signal). The signal
queue is a doubly linked list of structures containing one
signal code each. The queue is arranged as a ring, so
that the "next" pointer of the last entry points to the
first entiy (oldest pending signal). As each signal is
processed (the process's signal handler is called), the
kernel clears the signal code field of the entry, and
advances this field to point to the next entry in the
queue. While queue structures may be cleared (signal
code field is set to zero, indicating no signal pending),
they are not removed from the queue, and their memory
is not freed until the process dies. This field is zero until
the process receives a signal.
Initial signal queue structure. When the process first
receives a signal this field is installed as the first and

368

OS-9 INTERNAL STRUCTURE

Offset Name Size Description
$380 P$DefS1g 1 4 Initial signal queue structure. When the process first

receives a signal this field is installed as the first and
only entry in the signal queue. If the queue is full when
a signal is received, a signal queue structure is allocated
from system memory. Therefore if the process never
receives a signal with one already pending, no
dynamically allocated structures are needed.

$390 P$Thread 1 2 Addresses of the first and last "thread" structures
allocated to this process. This is a doubly linked list of
nominally general-purpose structures. At present it is
used to record outstanding "alarms" installed by the
process using the F$Alarm system call. If the process
has no alarms outstanding these fields will be zero.

$398 P$frag 1 2 Addresses of the first and last memory fragment
structures. This is a doubly linked list of structures
identical to the memory colour node structures used to
manage the free pool of memory. This linked list
identifies the free memory fragments not yet used from
the memory allocated to the process. This is necessary
because the kernel will take memory from the free pool
only in multiples of the system minimum allocatable
block size (at least 256 bytes), but is able to allocate to
the process in multiples of the process minimum
allocatable block size (currently 16 bytes). When a
process makes a request for memory, the kernel first
attempts to satisfy the request from the fragments
identified by this linked list. Only if this fails does the
kernel allocate additional system memory to the process.

$3A0 P$M0wn 1 Original owner of the primary module of this process.
This protects against a program, written by a user who
is not a super user, modifying its own module header
(which is naturally within its memory map) to set the
"module owner" field to zero, and so gain access to
resources reserved for members of the super user group.
The kernel uses this field to protect against a process
changing its user and group to become a super user (see
the description of the F$SUser system call in the
chapter on OS-9 System Calls).

The space at the end of the process descriptor for use as the system state stack (the
stack used during system calls made by the process) is slightly more than Ik bytes.
This is sufficient if all operating system components are written in assembly
language. However, more and more device drivers and file managers are being
written in C, which uses much more stack. Some file managers find it necessary to
allocate a separate, larger system state stack for each process. The next two fields
are available for management of such a stack. The current kernel (OS-9 version
2.4.3) does not use these fields:

369

OS-9 INTERNAL STRUCTURE

Offset Name Si ze Description
$3AC b

$454
System state stack. When the process is forked, its
system state stack pointer is set to the top of this
memory (the end of the process descriptor). This is
therefore (automatically) the stack of the process when
in system state (that is, when making a system call).

The high byte of the word P$State contains the bit flags that the kernel
uses - in conjunction with the byte P$QueuID - to identify the current
state of the process. The bit definitions for P$State (high byte) are:

Bi t Description when set
0 The process is dead. All its resources have been de-allocated except

for the process descriptor itself, which will be de-allocated once the
parent has received the process's exit status by executing a "wait for
child" F$Wait system call, or the parent dies.

1 The process is condemned. When it next would start execution in
user state it will be terminated.

4 The memory map permitted to the process has been altered. The
SSM must build a new MMU memory map for the process before the
process restarts execution in user state.

5 The time slice of the process has expired. When the process would
next start execution in user state, the kernel will perform a
reschedule of the active processes.

6 The process is in a timed sleep.
7 The process is executing a system call.

The possible values for P$QueuID (as ASCII characters) are:

Character Description
(space) no queue state - should not occur.
The process is not in a queue, and is not the current process (usually
dead).

a The process is in the active queue, waiting for processor time.
d The process has been created for debugging, but is not yet in any queue,

or has stopped at a breakpoint, or is executing without tracing ("at full
speed").

e The process is in an event queue, waiting on an event.
m The process is waiting for a buffer - implemented by the F$MBuf

system call of the Internet Support Package (ISP).
s The process is in the sleep queue, in timed or untimed sleep.
w The process is in the waiting queue, waiting for a child process to die.

370

OS-9 INTERNAL STRUCTURE

Character Description
* The process is the current process. It is not in any queue.
& The process is the system state debugger, in suspended state.

The field P$frag contains the root and end pointers to a linked list of
structures used to keep track of unallocated memory fragments. Because the
process could allocate memory of different colours, the list has the same
structure as the system free memory colour node list. Each structure
identifies the memory area from which it was taken, its colour and priority,
and the first and last memory fragments from this area, as a linked list. Thus
each process has a list of "locally free" memory areas that have been allocated
to it from the free pool (and so are no longer in the free pool), but have not
yet been allocated in response to a program request. The colour node
structure is described in the section on memory allocation, in the chapter on
OS-9 Modules, Memory, and Processes.

The field P$Thread contains the root and end pointers for the linked list of
thread structures (or thread "blocks") allocated for this process. The end
pointer points to the last structure in the linked list. Currently thread
structures are only used for alarms (see the chapter on Inter-process
Communication). Each structure represents a pending or cyclic alarm.
Remaining thread structures are automatically de-allocated by the kernel
when a process dies. The thread structure is shown below.

Offset Name Size Description

$000 T_I0 w Thread block type identifier. Because threads may be
used for other purposes in the future, the alarm
functions write a distinctive "magic number" here
(45245) when allocating the thread block, and check it
when deleting the alarm.

$002 T_Proc w Process ID of the process that created the block.

$004 T_MS1z 1 Size of memory allocated for the thread block - used
when de-allocating the block.

$008 T_User 1 Group and user number of the process that created the
block (the block owner). The System Process
temporarily takes on this group and user number when
executing the thread function.

$00C T_Next 1 With T_Prev, the "next" and "previous" pointers linking
this thread block into the linked list rooted in the
System Globals (either DThread or D AlarTh) Used
by the System Process when checking for alarms that
have reached their execution time. The linked list is
maintained in execution time order.

371

OS-9 INTERNAL STRUCTURE

$010 T_Prev 1 See TNext, above.
$014 T_L1nk 1 2 “Next" and "previous" pointers respectively linking this

thread block into the linked list rooted in the process
descriptor of the creating process (see the field
PSThread)

$01C T_Sys 1 4 Usage depends on thread block purpose. See below for
the usage of this field with alarms.

$02C T_Regs 1 18 Register stack frame, provided by the calling process for
use when executing the thread function. For user state
alarms this stack frame is automatically generated by
the kernel, and provides the parameters and routine
address for calling the F$Send system call.

The T_Sys field is structured as follows for alarm threads:

Offset Name Si ze Description
$01C T_Cycle 1 For cyclic alarms: number of ticks between alarms.

Always zero for non-cyclic alarms.
$020 T_WkT1me 1 For cyclic or relative alarms: the time for thread

execution, as ticks since system startup (compared with
D Ticks). For absolute time alarms: time of day for
thread execution, as seconds since midnight.

$024 T_WkDate 1 Only used for absolute time alarms - the Julian date for
thread execution.

372

	CHAPTER 14
OS-9 INTERNAL STRUCTURE
	14.1 THE SYSTEM GLOBALS
	14.2 THE OTHER SYSTEM MEMORY STRUCTURES
	14.2.1 Process Descriptor
	14.2.2 Path Descriptor
	14.2.3 Module Directory
	14.2.4 Device Table
	14.2.5 Device Static Storage
	14.2.6 Process Descriptor Table
	14.2.7 Path Descriptor Table
	14.2.8 Interrupt Polling Table
	14.2.9 Event Table
	14.2.10 Service Dispatch Tables

	14.3 SYSTEM GLOBALS STRUCTURE
	14.4 PROCESS DESCRIPTOR STRUCTURE

