
FILE MANAGERS

CHAPTER 13

FILE MANAGERS

To avoid the unnecessary duplication of many paragraphs, this
chapter assumes that you have already read the chapter on Device
Drivers.

File managers are essential components of the OS-9 I/O system. An
understanding of existing file managers allows the programmer to make the
most effective use of the I/O system within an application. However, some
applications are best served by writing a new file manager. This chapter aims
to describe the purpose of a file manager, and its interface to the kernel and
device drivers, to give the system programmer the essential information
needed to write a file manager. The Microware RBF and SCF file managers
are described as examples, and to help the application programmer make
best use of the I/O system.

The descriptions and code fragments in this chapter assume that the file
manager is written in 68000 assembly language. However, file managers may
equally well be written in C. The chapter on "Microware C and Assembly
Language" describes how this is done.

13.1 THE FUNCTION OF A FILE MANAGER
Under OS-9, a file manager performs the filing structure maintenance and
data processing for a class of like devices. That is, it performs all the logical
operations on the devices. The file manager does not know how to control the
hardware. Instead, it makes calls to the appropriate device driver to perform
low-level hardware operations. This division of functionality allows one file
manager to be used to manage a wide range of devices of a similar type,
including devices not existent when the file manager was written. For

313

FILE MANAGERS

example, the Microware Random Block File manager (RBF) provides a
hierarchical filing structure on almost any rewritable block structured
device, while the Microware Sequential Character File manager (SCF) is
suitable for almost all terminals and printers. Other file managers are
available from Microware and third-party suppliers.

In addition, the file manager writer is able to concentrate on the problems of
logical data manipulation, while the device driver writer handles the
complexities of interrupts and VLSI interface chips.

Because one file manager is designed to work with many - as yet unwritten -
device drivers, the file manager writer is also responsible for producing the
specifications for:

a) The functions and parameter conventions of the device driver
routines (other than initialize and terminate).

b) The options section of the path descriptor and device
descriptor.

c) The file manager storage in the path descriptor.

d) The file manager storage in the device static storage,
including the drive tables (if the file manager supports
multiple channels on one device).

While the kernel prevents concurrent accesses on the same path, it is
normally the file manager's responsibility to prevent concurrent accesses to
the same device. The kernel will queue an I/O call on a path on which there
is currently an I/O call being executed by another process. That is, two
processes have the same path (the same system path number) open (because
one inherited it from the other, or they both inherited it from the same
parent or other ancestor). One process has made an I/O call on the path, and
been put to sleep during the call by the file manager or device driver (usually
only the device driver will sleep, waiting for a device operation to complete).
The second process makes a call on the same path. The kernel will queue
(put to sleep) the second process until the I/O call of the first process
finishes.

The kernel uses the F$IOQu system call, which puts the process to sleep,
and links its process descriptor onto a linked list of process descriptors rooted
in the process descriptor of the process using the path. This creates a "queue"
of processes waiting for the process at the root of the queue to finish its I/O
operation. In this way the kernel prevents the use of one path descriptor by
two processes simultaneously. Note that no queuing is required if the first

314

FILE MANAGERS

I/O call does not sleep, as rescheduling is suspended while a system call is
being executed, so the second process would not have the opportunity to
make its I/O call until the first call finished.

However, the kernel does not check whether an I/O call on a different path is
to the same device - perhaps even on the same file - as a currently executing
call. This is because the kernel makes no assumption that the device cannot
handle multiple requests simultaneously. While the handling of multiple
hardware transactions concurrently is really a device driver function, most
file managers assume that the device cannot handle more than one
transaction at a time. Such file managers therefore prevent concurrent calls
into a particular device driver incarnation, by queuing calls that they wish to
make to the device driver until the device driver has finished executing any
current request. A typical mechanism for doing this is described in the
section on Resource Control.

13.2 FILE MANAGER ROUTINES
Each file manager module provides a set of routines to carry out I/O
functions on a path. The file manager routines are only called by the kernel,
in response to I/O system calls. Therefore the number, basic function, and
parameter convention of these routines is fixed. However, because the kernel
is not concerned with filing structures and data processing, the detail of the
function of each routine may vary significantly between file managers.

The file manager routines correspond directly to the OS-9 I/O system calls:

System call Function Description
IJCreate Create Create a new file, and open a path to it.
IJOpen Open Open a path to an existing file or device.
ISMakDIr Make

di rectory
Create a new directory.

ISChgDi r Change
d1rectory

Change the current data and/or execution directory of
the calling process.

ISDelete Delete Delete a file.
ItSeek Seek Set the file pointer of an open path (the position within

the file for the start of the next read or write).
IJRead Read Read data without editing.
ISReadLn Read line Read data, perhaps with line editing, ending on Carriage

Return or other end-of-record character.
ISWrite Write Write data without editing.

315

FILE MANAGERS

System call Function Description
I$Wr1tLn Write line Write data, perhaps with line editing, ending on

Carriage Return or other end-of-record character.
ISGetStt Get Status “Wild card" call to get information about a device or

path.
ISSetStt Set Status "Wild card" call to send information to or request action

on a device or path.
ISClose Close Close a path.

A file manager can choose not to implement one or more functions, returning
(with or without error) directly to the kernel, or perhaps passing the call
without interpretation to the device driver. This is particularly the case for
the file-related functions - Make Directory, Change Directory, Delete, and
Seek - as these are not appropriate to certain types of device (those that
cannot support a filing system), and for unrecognized sub-functions of the
Get Status and Set Status calls.

13.3 KERNEL ACCESS TO THE FILE MANAGER
The kernel accesses the file manager routines by means of a table of offsets
to the routines, similar to that for device drivers. The offset to the table from
the start of the module header is in the "execution offset" entry (M$Exec) of
the module header. Unlike the device driver offset table, however, the entries
are relative to the start of the table, not the start of the module. For
example:

EntryTable dc.w Create-EntryTable create a file
dc.w Open-EntryTable open a file
dc.w MakMr-EntryTable make a directory
dc.w ChgDlr-EntryTable change default directory
dc.w Delete-EntryTable delete a file
dc.w Seek-EntryTable set the file pointer
dc.w Read-EntryTable read data
dc.w Wrlte-EntryTable write data
dc.w ReadLlne-EntryTable read data with line editing
dc.w

*
Wr1teL1ne-EntryTable write data with line

editing
dc.w Getstat-EntryTable get Information
dc.w SetStat-EntryTable send a command
dc.w Close-EntryTable close a path

After each call to the file manager, if the I/O queue (F$IOQu) rooted in the
process descriptor of the calling process is not empty, the kernel marks the
calling process as "timed out", forcing a reschedule when the system call
finishes. (In OS-9 version 2.2 the calling process was marked as timed out

316

FILE MANAGERS

even if the I/O queue of the calling process was empty.) The kernel also
performs an "I/O unqueue" operation. That is, if the I/O queue of the calling
process is not empty, the calling process is detached from the queue, and the
first process in the queue is woken up. This allows other processes to get a
chance at the path or device, rather than letting the same process make
another request and "hog" the path or device. It also improves the
throughput of the I/O device - often the bottle-neck in a system - by quickly
giving time to a process that wants to use the device, rather than allowing
the previous process to finish its time slice.

13.4 PARAMETER CONVENTION
The kernel calls all the file manager routines with the same parameters:

(al) = Path Descriptor
(a4) = Calling process's Process Descriptor
(a5) = Caller's register stack frame
(a6) = System Globals

The kernel sets up the following path descriptor locations before calling the
file manager:

PD_CPR Process ID of the calling (current) process

PD_LProc Same as PD CPR
P0_RGS Address of caller's register stack frame (same as a5)

Note that the file manager is always supplied a properly initialized path
descriptor. The kernel allocates and initializes a new path descriptor before
calling the Create, Open, Make Directory, Change Directory, and Delete
routines of the file manager. The initialization of the path descriptor
includes attaching the device (I$Attach), even if the pathlist does not start
with a "/" (that is, the pathlist is relative to the data or execution directory).
The kernel copies the device descriptor options section to the path descriptor
options section.

Immediately after calling the Make Directory, Change Directory and Delete
file manager routines, the kernel terminates the path by de-allocating the
path descriptor and executing an I$Detach system call, because these calls
do not return an open path to the calling program. The kernel also
terminates the path after calling the Close routine of the file manager if the
use count of the path is zero.

317

FILE MANAGERS

The kernel expects the file manager to preserve the a5 and a6 registers, and
the high byte of the status register. The file manager may destroy the other
data and address registers.

13.5 PATHLISTS
A pathlist is the principal parameter to the Create, Open, Make Directory,
Change Directory, and Delete routines. If the pathlist begins with the 7
character, the kernel only interprets the first name element, assuming it to
be a device name. Any character not permitted in file names (by the
F$PrsNam system call) is taken to terminate the device name. Permitted
characters are alphanumeric, and The kernel does not interpret the
remainder of the pathlist, or any of the pathlist if it does not begin with the
T character.

Therefore elements of pathlists and the element separators can follow almost
any convention, according to the specification prepared by the file manager
writer. For compatibility with UNIX, however, elements are usually
separated by the character. RBF, Pipeman, and NFM use this convention.
In addition, file managers usually use the F$PrsNam system call to parse
name elements.

Multiple pathlist elements usually refer to a directory hierarchy, but could be
used for other purposes. In effect, the pathlist provides a mechanism for
passing an ordered list of character string parameters to the file manager.

13.6 CREATE AND OPEN
For file managers without filing structure support (such as SCF) these calls
are usually synonymous, and prepare for I/O on the device. Such file
managers will normally give an error if the pathlist is not a simple device
name. For file managers that do support a filing structure, Open should
prepare for access to an existing file, while Create should create a new file (or
give an error if a file of the same name already exists), and open it for access.

13.6.1 SCF

SCF treats Create and Open calls identically. SCF also "attaches" (I$Attach)
the "echo device" specified in the device descriptor (if one is given), and saves
its device table entry address in the path descriptor field PD_DV2. The echo
device is the device used for output when data is written to the device on
which the path was opened (the "primary device"), and is usually the same as

318

FILE MANAGERS

the primary device - that is, keyboard input from a terminal on a serial port
is echoed back to the terminal on the same serial port. SCF allocates a buffer
of 512 bytes (256 bytes prior to OS-9 version 2.3) for input line editing of
subsequent Read Line calls.

SCF calls the device driver's Set Status routine with the SS_Open function
code. The call is made only for the primary device, even if the echo device is
not the same as the primary device.

13.6.2 RBF

RBF parses the pathlist as described above, skipping the device name if the
pathlist starts with a character. If the pathlist starts with the character
and there are no following name elements, RBF opens the root directory of
the device (a Create request with such a pathlist is returned a "file exists"
error - E$CEF). If there are following name elements, RBF looks in the root
directory of the device for the first element. If the pathlist does not start with
the character, RBF looks for the first element in the current data or
execution directory, depending on whether the "execute" bit (bit 2) of the
requested modes byte is set. It then looks for the next element within that
directory, and so on.

All elements in the pathlist other than the last must be directories, thus
creating a tree structured directory system. In the Open call the last element
may also be a directory, provided the "directory" bit (bit 7) of the modes
parameter is set. The Create call cannot be used to create a directory - the
Make Directory call must be used. The Create call fails with a "file exists"
error - E$CEF - if the last element already exists in the directory.

At each stage RBF checks that the file or directory permissions contain the
requested mode bits, either in the public field of the permissions, or - if the
caller is in the same group as the file creator (or is a super user) - in the
private field of the permissions. If not, RBF returns a "file not accessible"
error - E$FNA.

In the Create call, RBF creates the file with the supplied permissions byte,
which specifies read, write, and execute permissions for public and private
access. Note that if the execute bit is set in the modes byte the pathlist is
assumed to be relative to the current execution directory even if neither the
public nor the private execute permission bit is set in the permissions byte.
Conversely, the permissions byte may set public or private execute
permission (or both) even if the modes byte does not have the execute bit set
(causing the pathlist to be taken relative to the current data directory). If the

319

FILE MANAGERS

"initial size" bit (bit 5) is set in the modes byte, the file is created with the
requested size, otherwise it is created empty (the size is zero).

Note that if an initial file size is requested, RBF will not create the file with
more than one segment. If a segment as large as the requested size cannot be
allocated, RBF allocates the largest segment it can. Therefore to guarantee
that a file is created with the desired size, the Create call should be followed
by a Set Status call with the SS Size function code to set the file size.

When creating a file, RBF inserts a new entry in the parent directory, using
the first available entry. That is, if a file has been deleted from the directory
(the first byte of the file name field is zero), then RBF will use that entry for
the new file. If all the entries in the directory are occupied, RBF extends the
directory, as it would extend any file. Each directory entry is 32 bytes - 28
bytes for the name, followed by 4 bytes giving the Logical Sector Number
(LSN) of the File Descriptor (FD) sector for the file (which RBF allocates and
initializes when creating the file). Note that RBF only uses the last 3 bytes of
the field, as RBF restricts LSNs to 24 bits. The name string is terminated by
having bit 7 of the last character set. All unused bytes in the directory entry
are set to zero.

RBF allocates a memory buffer equal to one sector in size for caching the file
descriptor sector, and another sector buffer for managing read and write
requests that start or end part of the way through a sector.

RBF calls the device driver Set Status routine with the SS_Open function
code.

13.6.3 The File Descriptor Sector

Each file (including directories) has a File Descriptor sector, giving
information about the file. The directory entry for the file contains the LSN
of the File Descriptor sector. (The LSN of the File Descriptor sector of the
root directory is in the DD_DIR field of LSN 0.) The File Descriptor sector
contains the user ID and group of the creator (the "file owner"), the file
permissions, the date the file was created, the date and time the file was last
"modified" (opened for writing), and the file size.

The remainder of the sector contains the file segment list. Each entry in the
list is 5 bytes, allowing up to 48 entries if the sector size is 256 bytes. (Prior
to OS-9 version 2.4, a bug in RBF caused the last entry not to be used, so the
file was limited to 47 segments.) The segment list describes the
fragmentation of the file. The first entry points to the first part of the file,

320

FILE MANAGERS

the second entry points to the second part of the file, and so on, until the
whole file has been located. The first 3 bytes of the entry give a 24-bit LSN,
indicating the start of that fragment (segment). The other two bytes are a
16-bit number indicating the length of the segment - the number of
contiguous sectors. The length of each segment will vary as required by RBF
to build up a file containing the total number of sectors occupied by the file.
In general, a file will be more fragmented if it has been extended since its
initial creation, or if the disk free space is in many separate small fragments
(as a result of many files being created and deleted). The File Descriptor
structure is shown below:

Offset Name Size Description

$000 FD-ATT b File attributes.
$001 FD_0WN b 2 File owner - group (first byte) and user ID.

$003 FDJJAT b 5 Date and time the file was last modified, as
YYMMDDHHMM.

$008 FDJ.NK b Number of links to the file. This field is always one. RBF
does not currently support file links, although the Delete
routine decrements this field and deletes the file if the
field is now zero.

$009 FD_SIZ 1 File size (in bytes).

$000 FD_Creat b 3 Date the file was created, as YYMMDD.

$010 FD_SEG The segment list.

Note that the file owner's group and user ID are held as byte values only, not
as word values (as in the rest of the system). This is a historical legacy from
the original OS-9 for the 6809, which did not have the concept of user
groups. Therefore under OS-9/68000 the word field for the user ID was split
into byte fields for group and user ID. When checking user and group
numbers for file access, RBF uses only the low byte of the caller's group and
user ID. For example, a user in group 256 will be able to access files
belonging to group 0 (the super user group). For this reason it is not
advisable to allocate group numbers and user IDs above 255.

The year numbers in the creation and modification fields are relative to
1900. Thus 1992 is expressed as 92 ($5C). The FD_Creat field contains only
the date of creation of the file, not the time. The FD DAT field contains the
date and time the file was last "modified" (opened with the write bit set in
the modes byte). When the file is first created this field is set to the date and
time of creation. Note that the time is held only to the minute. For this
reason programs that perform an action dependent on the time a file was last
updated can only resolve the update to the minute. For example, the make

321

FILE MANAGERS

utility may cause a file to be recompiled even though it has not been
changed, because the previous compilation happened within a minute of the
last edit of the source file, so the "last modified" times of the source and
Relocatable Object Files are the same.

As the segment size is held in a 16-bit number, the segment length cannot
exceed 64k-1 (65535) sectors. This sets the first limit on the size of RBF files.
For a sector size of 256 bytes, the file size is limited to 48*65535*256 =
768Mbytes.

RBF always keeps the filing system up to date on the disk. In particular, any
changes to the File Descriptor sector or the Allocation Bit Map (described
below) are immediately written to disk. While this makes RBF a little slower
than the disk file managers in some other operating systems, it ensures that
the filing system is very robust. The computer can be turned off or reset
while files are open, and the filing system will not be corrupted in any way. If
this happens, files that were being extended (writing at the end of the file)
may appear longer than expected. This is because RBF always extends a file
by at least the "minimum segment allocation" size given in the PD_SAS field
of the device descriptor (to reduce file fragmentation), and then trims the file
size back to the length actually used when the file is closed. Also, because
RBF maintains a sector buffer for data being written to the file, the data
most recently written to the file may not have been written to the disk.

13.6.4 The Allocation Bit Map

RBF manages the disk space using an Allocation Bit Map. This map uses a
number of contiguous sectors, following the disk identification (ID) sector
(LSN 0), and preceding the root directory. Each bit of each byte represents a
"cluster" of sectors on the disk. Bit 7 of the first byte represents the first
cluster (starting at LSN 0), and so on. A cluster is a group of contiguous
sectors. All the clusters on a disk are the same size, but this may be different
from the cluster size on another disk. The size of a cluster is set at format
time, and recorded in the disk ID sector. It must be an integral power of 2 (1,
2, 4, 8 and so on). In this way RBF can manage a disk with a large number of
sectors more quickly by grouping the sectors into clusters, so reducing the
size of the bit map. If a bit is set in the bit map, it indicates that the cluster is
in use (allocated to a file), or is defective (and so must not be allocated). The
bit map is initially built by the format utility.

When RBF allocates sectors to a file it always allocates complete clusters. The
first sector of the first cluster allocated to the file always contains the File
Descriptor sector. Therefore if the cluster size is greater than 1, the first

322

FILE MANAGERS

entry in the segmentation list for the file will always start with the LSN
immediately following the LSN of the File Descriptor itself.

When creating or extending a file, RBF determines the number of clusters
needed. It then searches the bit map, looking for the first free block (bits are
zero) large enough, and allocates the required number of clusters from the
start of the block, by setting the bits in the bit map to ones. If there is no
block large enough, RBF uses the largest free block that it found during the
search as the first new segment of the file. If the file is now large enough to
satisfy the caller's request, RBF terminates the allocation (even if the
allocation is not as great as RBF had intended). Otherwise RBF searches
again, allocating more clusters to more segments until enough space has been
found in total (or the disk is full, in which case RBF de-allocates the sectors,
and returns a "disk full" error - E$FULL).

RBF will not create a file segment whose clusters are not wholly represented
within one bit map sector. This means that a segment cannot contain more
clusters than 8 times the number of bytes in one sector. For 256 bytes per
sector this is a limit of 2048 clusters per segment. This is the other limitation
on file size under RBF. Therefore in the case of 256 byte sectors, if the
cluster size is less than 32 the limit is the number of clusters per segment
(2048), otherwise the limit is the number of sectors per segment (65535). For
example, if the cluster size is 1, the maximum file size is 48*2048*256 =
24Mbytes.

Note that these calculations assume that disk fragmentation does not further
limit the size of each segment (for example, two files being written
simultaneously will "leap frog" each other in the allocation bit map). Also, a
sector size larger than 256 bytes greatly reduces the problem - the segment
list for the file is larger (because the File Descriptor sector is larger), each bit
map sector is larger, and the sectors allocated to the file are larger.

The cluster size is set by the '-c' option of the format utility. Because a small
cluster size may restrict the file size on a large disk, while a large cluster size
will waste space (disk space is allocated to files in whole clusters), it is
reasonable to set a cluster size that allows a file to be as large as the whole
disk, not allowing for disk fragmentation. For example, a cluster size of 4
would be suitable for a 100Mbyte disk with a sector size of 256 bytes (giving a
maximum file size of 96Mbytes). Bearing in mind that the limitation imposed
by the rule that a segment cannot contain more than 65535 sectors, the
maximum file size for a disk with 256 byte sectors-is 768Mbytes, so it would
normally not help to set a cluster size greater than 32 with a sector size of
256 bytes.

323

FILE MANAGERS

If, however, the sector size is 512 bytes, the file descriptor segment list can
hold 99 entries, and a bit map sector corresponds to 4096 clusters. The file
size limit imposed by the segment restriction of 65535 sectors is
99*65535*512 = 3168Mbytes, and the file size limit imposed by the bit map
sector size for a cluster size of 1 is 99*4096*512 = 198Mbytes. Thus a cluster
size of 1 would be acceptable for disks up to 200Mbytes, and a cluster size of
16 is the maximum that need normally be used.

13.6.5 Access to the Whole Disk

RBF provides a "whole device" feature in the Open call. If the pathlist
consists simply of a device name followed by the '@' character ("commercial
at sign"), RBF opens the whole device as if it were a file. The program can
then seek, read, and write to the disk without regard for the filing structure.
The file pointer of the "file" starts (value 0) from the first byte of LSN zero.
For example, a seek to location 1024 followed by a read of 256 bytes would
read a sector - LSN 4 - of a disk with 256 byte sectors. Reading and writing
can use any block size, just as for a normal file, and the "file size" is the size
of the whole disk. Therefore all programs that do not use the file descriptor
or directory information of a file can be used without modification. For
example:

$ dump /d0@
$ merge /rOS -blOO >/dd/ramdisk_image

Users other than the super user group (group 0) are only allowed read access,
and are only allowed to read up to the end of the allocation bit map. This
protects against damage to the filing system, and prevents unauthorized
access to files.

13.7 CHANGE DIRECTORY

This call is normally only implemented by file managers that support a
hierarchical directory structure, such as RBF. Other file managers will
return an error - SCF returns E$BPNAM ("bad path name").

The process descriptor has a 32 byte area (P$DIO) for use by the kernel and
file manager in remembering which are the current execution and data
directories. The first 16 bytes are used for the data directory, and the
remaining 16 bytes for the execution directory. The kernel uses the first long
word of each half to store the device table entry address of the device with
the current directory, and reserves the following word. The remaining 10

324

FILE MANAGERS

bytes of each half are available to the file manager. RBF stores the sector
number of the file descriptor sector of the current directory.

As mentioned above, the kernel allocates and initializes a path descriptor
(including making the I$Attach system call) before calling the file manager.
Effectively, the file manager is working with an open path. The kernel
"closes" the path and de-allocates the path descriptor after calling the file
manager. Note that the kernel does not call the Close routine of the file
manager when doing this. Therefore the file manager must perform an
implicit closure of the directory file before returning to the kernel.

After calling the file manager Change Directory routine, and providing no
error was returned, the kernel increments the device use count in the device
table. This is to "hold" the I/O sub-system in existence even though there
may be no path open to the device. Note that the kernel does not decrement
the use count of the device in the device table when the current directory is
changed to another device, so the use count of a disk drive rises each time a
"change directory" request is made on it. The I$Detach system call (as made
by the deiniz utility) must be used to decrement the use count to zero if it is
necessary to remove the disk drive from the device table.

The calling program passes a "modes" byte, which must have either the read
or the execute bit set, or both. If the read bit is set, the current data directory
is changed to the requested pathlist. If the execute bit is set, the current
execution directory is changed. Thus both the current data and execution
directories can be changed (to the same directory) with one call, by setting
both mode bits. This protocol is followed by the kernel, and must also be
followed by the file manager.

RBF opens the directory in the normal way (so checking that the caller has
permission to access the directory for read or execute as requested), and then
saves the LSN of the directory's file descriptor sector in one or both of the
entries in the path descriptor, depending on the mode bits set. If the write
bit was set in the modes byte (as is done in the C library function chdirO),
RBF also attempts to update the "last modified" date and time of the
directory (in its file descriptor sector), but ignores any error (for example, if
the disk is write protected).

13.8 MAKE DIRECTORY
This call is normally only implemented by file managers that support a
hierarchical directory structure, such as RBF. Other file managers will
return an error - SCF returns E$BPNAM ("bad path name").

325

FILE MANAGERS

The kernel temporarily opens a path for the duration of this call, in a similar
way to the Change Directory call. The kernel treats this call as if it were a
Create call with the directory bit set in the permissions byte (which is
otherwise illegal), followed by a Close call. The file manager is therefore
called with a properly initialized path descriptor, and must perform an
implicit close of the file it has just created before returning to the kernel. For
its own purposes when "opening" the path, the kernel forces the permissions
byte to be directory and write ($82). In OS-9 version 2.3 and later, the
kernel also clears all bits in the supplied modes byte other than the read and
execute flags (bits 0 and 2), and bitwise ORs the resulting modes byte into
the permissions byte, thereby ensuring that any bits set in the modes byte
are also set in the permissions byte.

However, the kernel does not modify the caller's stack frame, so the file
manager is passed the modes and permissions as specified by the calling
program. As with the Create and Open calls, the kernel uses the execute bit
of the modes byte to determine whether the directory is to be created relative
to the current data or execution directory (unless the pathlist starts with a
device name).

RBF uses the execute bit of the modes byte in the same way. The new
directory is created with file attributes as specified by the permissions byte
supplied by the calling program. The directory bit is also set in the file
attributes. In addition to creating the directory (in the same way as any file),
RBF writes two directory entries to the new directory - "parent" and "self'.
The "parent" entry is first, and has the name Its File Descriptor LSN field
contains the LSN of the File Descriptor of the directory that contains this
directory. The "self entry has the name '.'. Its File Descriptor LSN field
contains the LSN of the newly created directory itself. This information
allows RBF to support pathlists that move up the directory hierarchy, such as
'../DEFS'.

A directory is therefore created with an initial file size of 64 bytes. RBF
ignores a request to create a directory with a larger size (indicated by setting
the "initial file size" bit - bit 5 - of the modes byte). However, RBF allocates
a first segment to the directory whose size is one sector less than the
minimum segment allocation size, in anticipation of many small extensions to
the directory (as files are created in the directory). Similarly, if the directoiy
later requires additional disk space for a new entry, the new segment size is
determined by the minimum segment allocation size (PD_SAS in the path
descriptor) - the extra sectors above the actual directory file size are not
de-allocated.

326

FILE MANAGERS

13.9 DELETE
This call is normally only implemented by file managers that support a filing
structure, such as RBF. It could be used for other purposes - for example, to
delete a window in a window management system. It is essentially the
converse of the Create call. File managers that do not support this call will
normally return an error - SCF returns E$BMODE ("bad mode").

The kernel's behaviour is almost identical to its Make Directory handler,
except that it uses the modes byte without modification, and copies the
modes byte to simulate a permissions byte for the purposes of initializing the
path descriptor. Again, the execute bit of the modes byte is used to determine
whether the pathlist is relative to the current execution or data directory.
The kernel calls the Delete routine of the file manager, and then de-allocates
the path descriptor. The file manager's Delete routine must locate and delete
the file.

RBF finds the file in the same way as in the Open call, except that it also
checks that the calling program has write permission for the file. RBF then
trims the file size back to zero, in a similar way to the Set Status call "set file
size". This de-allocates all of the clusters allocated to the file, except the first
cluster, which contains the File Descriptor sector. Finally, RBF de-allocates
this last cluster, and marks the file as deleted in the parent directory, by
overwriting the first character of the name with a byte of zero.

Normally, if the file size is decreased, resulting in a segment table entry no
longer being required, the "number of sectors" field of the entry is set to zero.
From OS-9 version 2.3 onwards, RBF does not clear the segment list in the
File Descriptor sector to zeros when trimming the file in the Delete routine.
This allows a file that has just been deleted to be recovered, provided no files
have been created or extended in the meantime. The only information not
available is the first character of the file name in the directory entry. Such
an "undelete" utility is not provided as standard with OS-9.

RBF will not allow a directory to be deleted. The "set attributes" Set Status
call (SS_Attr) must be used to remove the directory attribute of the file
before deleting a directory file. RBF will only allow this to be done if all the
entries in the directory have been deleted (other than the ''self' and "parent"
entries) - that is, the directory is empty. The deldir utility performs all
three operations. It deletes all the files in a directory, removes the directory
attribute from the directory, then deletes the file.

327

FILE MANAGERS

13.10 SEEK
This call requests a repositioning of the file pointer for subsequent reading
or writing. It is therefore normally only implemented by file managers that
support random access of data, such as RBF. It could be used for other
purposes, such as setting the cursor position in a graphics display.

SCF does not support this call - it does nothing, but returns no error.

RBF allows any file pointer value to be set. The device is not accessed as part
of the seek operation. If the file pointer is past the current end of the file, a
subsequent Read or Read Line call will return an "end of file" error
(E$EOF), while a subsequent Write or Write Line call will cause the file to
be extended. The file is extended to the length given by the file pointer set by
the Seek call, plus the length of the Write or Write Line call. This leaves a
portion of the file unwritten - it will contain whatever data was previously in
the allocated sectors.

13.11 READ AND WRITE
These are the "raw" data transfer calls, to get data from or send data to a
device. In the general philosophy of OS-9 I/O, these routines transfer the
requested number of bytes unless an error occurs, or the end of the file is
reached when reading. Other input termination conditions are file manager
dependent. The file manager may also implement some processing of the
data. However, the philosophy of these calls is in contrast to the Read Line
and Write Line calls, so the data processing is usually minimal.

13.11.1 RBF

RBF performs no data processing. The number of characters transferred is
always the number requested, unless a device driver error occurs, or the end
of the file is reached in a Read call, or the disk (or the file's segment list) is
full during a Write call. If a Read call attempts to read past the end of the
file, no error is returned provided one or more bytes were read. The file
pointer is moved to the end of the file. A subsequent Read call - reading
starting at the end of the file - is returned an "end of file" error (E$EOF).
For both Read and Write calls, the file pointer is advanced by the number of
bytes read or written.

When a Write call writes past the end of the file, RBF automatically extends
the file to accommodate the new length. When extending a file, RBF checks
whether the current last cluster in the file already has sufficient room to

328

FILE MANAGERS

extend the file. If not, RBF checks whether the last segment in the file has
sufficient room (in case it was pre-extended by an earlier write). If not, RBF
must allocate additional space for the file, as described above.

13.11.2 SCF

In the Read call, SCF echoes characters read (if echo is enabled in the path
descriptor PD_EKO field) to the attached echo device (usually the same as
the primary device). SCF terminates the call with an "end of file" error
(E$EOF) if the end-of-file character in the path descriptor (PD_EOF) is
not zero, and matches the first character read. SCF also terminates the input
prematurely if an input character is not zero, and matches the
end-of-record character in the path descriptor options section (PD_EOR),
or if the device driver returns an error.

In the Write call, SCF implements its "page pause" feature. That is, if the
"page pause" flag is set in the path descriptor (PD_PAU is not zero), SCF will
pause before sending a Carriage Return character if the total number of
Carriage Return characters sent since SCF last read a character on this path
is equal to the "number of lines per page" field (PD PAG). Therefore "page
pause" must be turned off in the path descriptor (PD_PAU set to zero) if
binary data is to be sent that may include Carriage Return characters (byte
value $0D). Otherwise the output will be paused once the number of Carriage
Return characters sent equals the "page length" field (PD_PAG), until a
character is received from the device.

13.12 READ LINE AND WRITE LINE
The only strict difference in the OS-9 I/O philosophy in file manager
operation between these routines and the Read and Write routines is that in
addition to the reasons for termination of the Read and Write calls (given
above), these routines terminate if a Carriage Return character is
encountered. However, even this feature is a function of the file manager
only. In addition, it is intended that file managers may implement more data
editing in these calls than in the Read and Write calls.

Because the calls should terminate if a Carriage Return character is
transferred, the actual number of characters transferred may be less than
the number requested. Note that the Carriage Return character is
transferred, and is included in the count of characters transferred. If no
Carriage Return character is encountered, the transfer will terminate once

329

FILE MANAGERS

the requested number of characters has been transferred, just as with the
Read and Write calls.

13.12.1 RBF

RBF behaves exactly as described above for the Read and Write calls (with no
data processing), other than terminating the request when a Carriage Return
character is read or written.

13.12.2 SCF

SCF behaves as described for the Read and Write calls, with some additional
features. In the Write Line call, characters are converted to upper case if that
option is enabled in the path descriptor (the PD UPC field is not zero), and
a Line Feed character (byte value $0A) is automatically output after the
Carriage Return character (if any) if the PD_ALF field is not zero. The SCF
end of line pause is implemented. That is, if the device driver sets the "pause"
flag in the Device Static storage because the "pause" character was received
(non-zero, and matching the value in PD_PSC), SCF pauses output before
outputting the Carriage Return character, until a character (other than the
"pause" character) is received.

SCF also implements its end of page pause feature (as described above), and
tab expansion - tab characters are expanded to spaces. That is, if a non-zero
character matching the PD_Tab field of the path descriptor (usually $09) is
to be transmitted, SCF instead transmits space characters (byte value $20) to
bring the total number of characters sent since the last Carriage Return up
to an integral multiple of the tab length field (PD_Tabs).

In the Read Line call SCF terminates when the character read matches the
"end of record" character (PD_EOR), rather than the Carriage Return
character. Normally the "end of record" character is set to be the same as the
Carriage Return character. Note that input does not terminate when the
requested number of characters has been input. SCF continues to input
characters until the "end of record" character is received, discarding any
characters that exceed the number requested. Input also terminates if the
device driver returns an error, or if the "end of file" character (PD EOF) is
received and is the first character in the buffer. (Note that other characters
can be input, provided they are deleted before the "end of file" character is
entered.)

Note also that the "end of record" character is echoed without converting it to
a Carriage Return character, and that the "automatic line feed" feature of

330

FILE MANAGERS

SCF is implemented only if a Carriage Return character is output, not an
"end of record" character.

Input is through the SCF editing buffer, and so is restricted to 512 bytes (256
prior to OS-9 version 2.3), including the "end of record" character. The SCF
input line editing features are operative during a Read Line call. The
following list shows the line editing keys, giving the path descriptor field
containing the key character value, and the standard setting for that field.

PD field Standard Action
PD_BSP AH Delete the character to the left of the cursor.
PD_DEL AX Delete all characters (delete line).
PD_RPR AD Redisplay all characters (reprint line). This is useful if the

display has become corrupted, perhaps due to limitations of
the display terminal.

PD_DUP AA Redisplay from the current position in the input buffer to
the end of the line. This causes SCF to display characters
from the input buffer, starting at the current cursor
position, and stopping at the first "end of record" character
encountered, or at the last character ever entered into the
buffer. This allows an entered line to be repeated. It also
allows a simple form of editing of a previous line, by typing
in and so overwriting characters in the buffer, and then
redisplaying the remainder of the buffer (and then perhaps
backspacing over some characters, and overwriting those).

13.13 GET STATUS AND SET STATUS

These are "wild card" routines, and so their function is very much file
manager dependent. Most file managers implement the SS_Opt function of
the Set Status call, setting new path descriptor options. The file manager
may restrict which fields of the path descriptor options section can be
modified in this way.

File managers will normally pass all calls on to the driver, even if they have
recognized and handled the call (unless the file manager itself generated an
error). If the file manager has handled the call, and the driver returns an
"unknown service request" error (E$UnkSvc), the file manager should
ignore the error. This permits drivers to choose to act on calls already
handled by the file manager (such as a change of the path descriptor options
section), or reject the call by returning the E$UnkSvc error.

File managers may internally generate calls to the device driver. For
example, by convention file managers make an SS Open Set Status call

331

FILE MANAGERS

when openeing or creating a file, and an SS Close Set Status call when the
last image of a path is closed. Note that if an internally generated call might
also be made from a program, the file manager will need to pass any
parameters by putting them in the caller's register stack frame (saving and
afterwards restoring what was there before!), because the device driver
cannot know whether the call was from a program, or was internally
generated by the file manager.

SCF recognizes no calls other than the SS_Opt Set Status call. RBF
implements several calls. They are described in detail in the OS-9 Technical
Manual, and are also briefly listed below:

□ Get Status

Function Description
SS_Ready

SS_S1ze

SS_Pos

SS_EOF

SS_FD

SS_FDInf

Test for data available (always true).
Get file size.
Get current file pointer.
Test for file pointer at end of file.
Read part or all of the File Descriptor sector of the file.
Read part or all of a File Descriptor sector, specifying the LSN of the File
Descriptor sector (usually from reading the directory entry of a file). This
permits a File Descriptor sector to be read without opening the file.

□ Set Status

Function Description
SS_Opt

SS_S1ze

Update the options section of the path descriptor from the caller's buffer.
Set a new size for the file - causes the file to be extended or truncated
(trimmed).

SS_FD Update the File Descriptor sector of the file from the caller's buffer. The
segment list cannot be altered, and only two other fields can be altered: the
owner's group and user ID (can only be altered by a super user), and the "last
modified" date and time. Prior to OS-9 version 2.3, the date of creation could
also be altered.

SS_T1cks Set the maximum wait for a record to become unlocked. If the caller is
subsequently put to sleep by RBF because it attempts to read a record on this
path that is currently held by another process, RBF uses this as the
parameter to the sleep call. A value of zero (the default) will cause an
indefinite wait for the record to be released. A timeout while waiting causes
RBF to return an ESLock error to the caller.

332

FILE MANAGERS

Function Description
SS_Lock Request RBF to lock part or all of a file. This will lock a record without the

need for the calling process to read the record. A further call to this function
will release any previously locked record. Hence a call with a record length of
zero removes any lock held by this process on the file.

SS_Attr Change the attributes (permissions) of the file. The calling process must be a
member of the same group as the owner of the file, or be a super user. The
directory bit of a directory file can only be cleared if the directory has no
entries still in use (other than "self and "parent"). The directory bit of the
root directory cannot be cleared.

13.14 CLOSE
The Close routine is essentially the converse of the Open and Create
routines. The file manager is requested to ensure that any resources
allocated for the management of the path are de-allocated, and that all
information about the file (if a filing system is supported) is up to date on the
medium. However, the Close system call (I$Close) is also the converse of the
Duplicate Path system call (I$Dup). Therefore a Close request to the file
manager may not cause the termination of a path, as there may be other
duplications (or "images") still in existence.

Path images are counted in the path descriptor word field PD COUNT. The
kernel also maintains the byte field PD_CNT, but this is for historical
compatibility only. The file manager should terminate the path and
de-allocate associated resources only when the Close routine is called with
the PD_COUNT field at zero. When this occurs, a file manager will also
typically generate a SS Close Set Status call to the device driver.

13.15 CALLING THE DEVICE DRIVER
The file manager calls the device driver to carry out physical device
operations, and to pass on Get Status and Set Status calls. The section on
Device Drivers gives details of the device driver routines, and the calling
conventions used by SCF and RBF. Note that the file manager must not call
the Initialization and Termination routines of the device driver - these are
called only by the kernel.

A device driver is a separate OS-9 memory module, and the file manager
writer cannot know the address of the device driver at compile time. To call a
device driver routine the file manager must calculate the routine address,
using the device driver module address in the device table entry, and the

333

FILE MANAGERS

offset to the required routine (from the routine offset table in the device
driver). The offsets within the table have been symbolically defined by
Microware in the file 'DEFS/sysio.a'.

For example, to call the driver Read routine:
movea.l PD_DEV(al),a0
movea.l VSSTAT(aO),a2
movea.l V$DRVR(aO),a0
move.l MSExec(aO),d0

get device table entry address
get device static storage
get driver module address
get offset to routine offset table

move.w D$READ(aO,dO.l),d0 get offset to read routine
jsr 0(a0,d0.w) call the routine

The file manager will normally save the processor registers that it wishes to
have preserved before calling the device driver. This avoids the need for the
device driver writer to know which registers the file manager wishes
preserved.

13.16 RESOURCE CONTROL
Paths and devices are system resources. Catastrophic results could occur if
two processes were allowed concurrent access - system memory structures
could be corrupted, and device operations confused. In general this cannot
occur, because process rescheduling does not occur while a process is
executing in system state, so the system call can finish its operations without
worrying that it may be scheduled out, and another process scheduled in
which will want to use the same resource.

However, it is possible for an operating system routine to explicitly go to
sleep (F$Sleep or F$Event). This is normal practice in interrupt-driven
device drivers. In this case another process may become the current process,
and may attempt access to the same system resource.

The kernel controls concurrent accesses to the same path, using the
PD_CPR field of the path descriptor. If this field is non-zero when a process
makes an I/O request on the path, the kernel assumes it to be the ID of a
process currently executing an I/O operation on the path, and I/O queues the
calling process on that process (F$IOQu system call). Otherwise it puts the
ID of the calling process in the PD_CPR field, so holding the path for the
calling process. On return from calling the file manager, the kernel releases
the path by clearing the PD_CPR field, and waking up the first process in
the queue of processes queued on the calling process (if any).

However, the kernel does not implement any control of concurrent accesses
to devices, or to "channels" within devices. This function is left for the file

334

FILE MANAGERS

manager or device driver. The file manager writer must decide what control
of concurrent accesses the file manager will provide, and the device driver
must implement any remaining functionality. SCF and RBF use a common
mechanism, which removes the need for the device drivers to perform any
control over concurrent accesses. They use the V_BUSY field of the device
static storage to prevent concurrent accesses to the whole device, in the same
way the kernel uses PD_CPR to prevent concurrent accesses to the path
descriptor.

When the file manager wishes to acquire the device (for example, before
calling the device driver), it checks the V_BUSY field. If it is zero, the device
is free - the file manager copies the process ID of the calling process to this
field, and makes its call to the device driver. On return, the file manager
clears the V_BUSY field, and wakes up the first process (if any) queued on
the current process. If V BUSY is not zero, however, the file manager
assumes it is the process ID of a process currently making a call into the
device driver, and I/O queues the current process onto the process that is
holding the device (F$IOQu system call). This puts the current process to
sleep. On wakeup, the file manager again tries to acquire the device, unless it
decides that a fatal condition has occurred.

It is up to the file manager writer to decide when and how to acquire control
of a device - it can be applied to the device as a whole, or to a "channel" on
the device, or it can even be left entirely to the device driver. RBF and SCF
behave somewhat differently. RBF acquires the device just before calling the
driver, and releases it on return from the driver (unless it is manipulating
the allocation bit map, in which case it hangs on to the device until it has
finished the allocation bit map function). By contrast, SCF acquires the
device (and the associated echo device, if any) at the start of the file manager
routine, and does not release it (knowing that the kernel will perform an I/O
unqueue operation when SCF returns to the kernel). This keeps text lines
indivisible if multiple processes are writing to the same device.

Because only one field - V_BUSY - is used for device allocation, these file
managers prevent concurrent read and write requests. This is why output
cannot occur to the screen while a process is taking in input from the
keyboard. This is not a fixed requirement, however. Provided the device
driver can handle concurrent read and write operations, the file manager can
allocate the device for read and write operations separately, using separate
fields (defined by the file manager writer) in the device static storage. The
same applies to the allocation of multiple channels within a device. In the
most liberal case, the file manager will use separate allocation fields for read
and write operations on each channel, leaving the device driver with the

335

FILE MANAGERS

responsibility to ensure that it does not cause conflicts of use of the device
static storage, or of access to the physical device interface.

There is no simple system call to "I/O unqueue" a process waiting on the
current process. The file manager must check the I/O queue fields of the
current process's process descriptor, unlink the current process from the
queue, and wake up the first t process in the queue. If there were multiple
processes in the original I/O queue, the remainder of the queue is now rooted
in the process descriptor for the process that has been woken:

Done

move.w P$I0QN(a4).d0 get ID of process queued on this
beq.s Done ..none; no action
cl r.w P$I0QN(a4) clear the "next" link
moveq #S$Wake.dl wake up the queued process
os9 FSSend by sending the wakeup signal
os9 FSGProcP get proc desc ptr of queued process
cl r .w P$IOQP(al) clear the 'previous' link

However, as described for SCF above, the file manager does not need to
perform an "I/O unqueue" operation when it has finished with the device or
channel, because the kernel always performs such an operation after calling
the file manager. Therefore the kernel will wake up the first process queued
on the current process, whether the reason for queuing was because the
process wanted to use the same path, or the same device. RBF performs an
unqueue operation as soon as its call into the device driver has finished only
because it aims to allow fair usage of the device by multiple processes
concurrently.

Note that SCF does not use this device acquisition technique in a Get Status
call. Therefore the V BUSY field is not set, and if the device driver sleeps
within the Get Status call, SCF may call any of the driver's routines as the
result of another I/O call (from another process on another path to the same
device).

13.17 A SKELETON FILE MANAGER
As with device drivers, part of the problem in writing a file manager is
knowing where to start. This section shows a skeleton file manager in 68000
assembly language. The chapter on "Microware C and Assembly Language”
shows how this can be adapted to form the core of a file manager written in
C.

336

FILE MANAGERS

* Skeleton file manager
Typ_Lang set (Fl Mgr«8)+0bjct module type and language
Att_Revs set ((ReEnt+SupStat)<<8)+0 module attributes and
* revision
Edition set 1 software edition number

psect skelmgr,Typ_Lang,Att_Revs,Edit1on,0.EntryTable
use /dd/DEFS/oskdefs.d

* Routine offset table:
EntryTable dc.w Create-EntryTable create

dc.w Open-EntryTable open
dc.w MakD1r-EntryTable make di rectory
dc.w ChgDlr-EntryTable change directory
dc.w Delete-EntryTable delete
dc.w Seek-EntryTable seek
dc.w Read-EntryTable read
dc.w Write-EntryTable write
dc.w ReadLn-EntryTable read Hne
dc.w WrlteLn-EntryTable write line
dc.w GetStat-EntryTable get status
dc.w SetStat-EntryTable set status
dc.w Close-EntryTable close

* Create
* Passed: (al) - Path Descriptor
* (a4) = Process Descriptor c>f current process
★ (a5) - caller's register stack frame
* (a6) = System Globals
* Returns: carry s,et if error, with error code in dl.w
* May destroy: dO- d7/a0-a4,ccr (NOT a5/a6)
*
Create movea. 1 R$a0(a5),a0 get ptr to pathlist

move.w //E$BMode,dl error - can't create
or1 //Carry,ccr
rts

* Open
* Passed: (al) = Path Descriptor
* (a4) = Process Descriptor of current process
* (a5) = caller's register stack frame
* (a6) = System Globals
* Returns: carry set 1f error, with error code In dl.w
* May destroy: d0-d7/a0-a4,ccr (NOT a5/a6)

Open movea.l R$aO(a5),aO
move.w //ESBMode.dl
or1 //Carry,ccr
rts

get ptr to pathllst
error - can't open

337

FILE MANAGERS

Returns: carry set 1f error, with error code 1n dl.w
May destroy: d0-d7/a0-a4,ccr (NOT a5/a6)

* Make di rectory
* Passed: (al)
* (a4)
* (a5)
* (a6)

= Path Descriptor
= Process Descriptor of current process
- caller's register stack frame
= System Globals

MakDir movea.l R$aO(a5),aO get ptr to pathlist
move.w #E$BMode.dl error - can't make directory
or1 #Carry,ccr
rts

* Change directory
* Passed: (al) = Path Descriptor
* (a4) - Process Descriptor of current process
* (a5) = caller's register stack frame
* (a6) = System Globals
* Returns: carry set 1f error, with error code 1n dl.w
* May destroy: d0-d7/a0-a4,ccr (NOT a5/a6)

ChgDlr movea.1 R$a0(a5),a0 get ptr to pathlist
move.w #E$BMode.dl error - can't change directory
or1 //Carry,ccr
rts

* May destroy: d0-d7/a0-a4,ccr (NOT a5/a6)
*

* Delete
* Passed: (al) = Path Descriptor

(a4) = Process Descriptor of current process
(a5) = caller’s register stack frame

* (a6) = System Globals
* Returns: carry set 1f error, with error code 1n dl.w

Delete movea.1 R$a0(a5),a0 get ptr to pathlist
move.w #E$BMode.dl error - can't delete
ori //Carry ,ccr
rts

* Seek
* Passed: (al) = Path Descriptor
* (a4) = Process Descriptor of current process
* (a5) = caller's register stack frame
* (a6) = System Globals
* Returns: carry set 1f error, with error code 1n dl.w
* May destroy: d0-d7/a0-a4,ccr NOT (a5/a6)

Seek move.l R$dl(a5).d0 get desired position
rts no action - carry 1s clear

338

FILE MANAGERS

* Read
* Passed: (al) - Path Descriptor
* (a4) = Process Descriptor of current process
* (a5) = caller's register stack frame
* (a6) = System Globals
* Returns: carry set If error, with error code 1n dl.w
* May destroy: d0-d7/a0-a4,ccr (NOT a5/a6)

Read move.l R$dl(a5),d0 get (max) number of bytes to read
movea.l R$aO(a5),aO get ptr to buffer
clr.l R$dl(a5) no bytes read
rts no action - carry is clear

* Write
* Passed: (al) = Path Descriptor
* (a4) = Process Descriptor of current process
* (a5) = caller's register stack frame
* (a6) = System Globals
* Returns: carry set 1f error, with error code in dl.w
* May destroy: dO-d7/aO-a4,ccr (NOT a5/a6)

Write move.l R$dl(a5),d0 get (max) number of bytes to write
movea.l R$a0(a5),a0 get ptr to buffer
clr.l R$dl(a5) no bytes written
rts no action - carry 1s clear

* Read line
* Passed: (al) = Path Descriptor
* (a4) = Process Descriptor of current process
* (a5) = caller's register stack frame
* (a6) = System Globals
* Returns: carry set if error, with error code 1n dl.w
* May destroy: d0-d7/a0-a4,ccr (NOT a5/a6)
*
ReadLn move.l R$dl(a5),d0 get (max) number of bytes to read

movea.l R$a0(a5),a0 get ptr to buffer
clr.l R$dl(a5) no bytes read
rts no action - carry 1s clear

* Write line
* Passed: (al) = Path Descriptor
* (a4) = Process Descriptor of current process
* (a5) = caller's register stack frame
* (a6) = System Globals
* Returns: carry set 1f error, with error code in dl.w
* May destroy: d0-d7/a0-a4,ccr (NOT a57a6)

WrlteLn move.l R$dl(a5),d0 get (max) number of bytes to write
movea.l R$a0(a5),a0 get ptr to buffer
clr.l R$dl(a5) no bytes written
rts no action - carry is clear

339

FILE MANAGERS

* Get status
* Passed: (al) - Path Descriptor
* (a4) = Process Descriptor of current process
* Ca5) = caller's register stack frame
* (a6) = System Globals
* Returns: carry set 1f error, with error code 1n dl.w
* May destroy: d0-d7/a0-a4,ccr (NOT a5/a6)

GetStat move.w R$dl+2(a5),d0 get function code
move.w EJUnkSvc.dl unknown function
or1 #Carry,ccr show error
rts

* Set status
* Passed: (al) = Path Descriptor
* (a4) = Process Descriptor of current process
* (a5) = caller's register stack frame
* (a6) - System Globals
* Returns: carry set 1f error, with error code 1n dl.w
* May destroy: dO-d7/aO-a4,ccr (NOT a5/a6)

SetStat move.w R$dl+2(a5).d0 get function code
move.w ESUnkSvc.dl unknown function
ori
rts

#Carry,ccr show error

* Close
* Passed: (al) - Path Descriptor
* (a4) = Process Descriptor of current process
* (a5) = caller's register stack frame
* (a6) = System Globals
* Returns: carry set 1f error, with error code 1n dl.w
* May destroy: d0-d7/a0-a4,ccr (NOT a5/a6)

Close tst.w
bne.s
nop

CloselO rts

PD_COUNT(al) last duplication 1s closing?
CloselO ..no

no action
no error - carry 1s clear

ends end of code

340

	CHAPTER 13
FILE MANAGERS
	13.1 THE FUNCTION OF A FILE MANAGER
	13.2 FILE MANAGER ROUTINES
	13.3 KERNEL ACCESS TO THE FILE MANAGER
	13.4 PARAMETER CONVENTION
	13.5 PATHLISTS
	13.6 CREATE AND OPEN
	13.6.1 SCF
	13.6.2 RBF
	13.6.3 The File Descriptor Sector
	13.6.4 The Allocation Bit Map
	13.6.5 Access to the Whole Disk

	13.7 CHANGE DIRECTORY
	13.8 MAKE DIRECTORY
	13.9 DELETE
	13.10 SEEK
	13.11 READ AND WRITE
	13.11.1 RBF
	13.11.2 SCF

	13.12 READ LINE AND WRITE LINE
	13.12.1 RBF
	13.12.2 SCF

	13.13 GET STATUS AND SET STATUS
	13.14 CLOSE
	13.15 CALLING THE DEVICE DRIVER
	13.16 RESOURCE CONTROL
	13.17 A SKELETON FILE MANAGER

