
DEVICE DRIVERS

CHAPTER 12

DEVICE DRIVERS

<
This section is intended to dispel the mystery surrounding device
drivers. It explains the purpose of a device driver within OS-9,
describes the operating system environment the device driver
works in, and shows typical algorithms for particular device types.
Particular attention is given to the use of interrupts, as interrupt-driven
devices are central to the proper functioning of a multi-tasking computer

(under any operating system).

The descriptions and code fragments in this section assume that the device
driver is written in 68000 assembly language. However, device drivers can
equally well be written in C. The section on Microware C and Assembly
Language describes how this is done.

12.1 THE FUNCTION OF A DEVICE DRIVER
A device driver is one part of an OS-9 I/O sub-system. All I/O system calls go
initially to the kernel. However, the kernel has no understanding of the filing
structure of a device, or of the hardware used to control the device. The job
of the kernel is simply to set up the software environment, such as allocating
a path descriptor, or locating an existing path descriptor if the path is
already open. The kernel must then call the file manager or the device driver
to carry out operations on the device. Similarly, the file manager
understands the data structure of the device, but it does not know how to
handle the hardware. If the file manager wishes to perform device operations
- such as a data transfer - it must call the device driver.

In summary, the OS-9 I/O sub-system philosophy is to split the I/O
operations as follows:

257

DEVICE DRIVERS

• The kernel allocates and de-allocates path descriptors, device table
entries, and device static storages.

• The file manager handles the filing structure and any data editing.

• The device driver carries out physical device operations.

The device driver is therefore generally only concerned with performing low
level physical device operations, without any understanding of why these are
be carried out. However, this is not a strict requirement of OS-9. Device
drivers may perform data interpretation, or other higher-level functions. For
example, serial port drivers generally recognize certain special characters,
such as the abort and interrupt keys. This is necessary because these keys
must be acted upon as soon as they are received - that is, within the
interrupt service routine. The file manager would only "see" the keys when a
process subsequently performs a read request, which may be much later (or
never!).

Similarly, a serial port driver for communications work might also
incorporate a communications protocol because a received packet must be
acknowledged within a very short time of reception, or because the file
manager being used does not understand the protocol. It is sufficient that the
combination of the file manager and the device driver provides all the data
manipulation and hardware control functions.

The I/O system is normally a simple tree structure. There is one kernel,
which can call multiple file managers. Each file manager can call multiple
device drivers. Although it is conceivable that different file managers could
call the same driver, in practice this is rarely done, because each file manager
will normally have a different calling convention, and different structures for
the path descriptor and device static storage. The RBF and PCF file
managers are an example of this technique. PCF carefully uses the same
path descriptor and device static storage structures as have been defined by
the writer of RBF, so that PCF can implement an MS-DOS filing system
using existing RBF device drivers.

12.2 DEVICE STATIC STORAGE

When considering the operation of an I/O sub-system within a multi-tasking
operating system it is important to distinguish between "logical" paths and
"physical" devices. A path is an operating system construct to enable a
program to make system calls for data transfer and control on a device. The
operating system can create more paths (given enough memory), up to some
large limit (65535 under OS-9). A device is (normally) a construct to allow

258

DEVICE DRIVERS

the operating system to control a physical hardware object, such as a disk
drive or a serial port. The operating system can "create" new devices, but
usually only on a one-to-one correspondence with the hardware objects.
Multiple paths may be open on a single device, but a path cannot be open on
multiple devices. Note that this abstracted description relates to the kernel's
view of devices. At a lower level (for example, in a device driver), the
definition may become blurred. For example, a pipe does not relate to any
hardware object - it uses a memory buffer only. Also, a device driver could
use multiple I/O chips to provide one "device" with a complex function.

Because at any one time a device may have multiple paths open to it, or no
paths, the path descriptor is not a suitable place to store variables for the
control of the device. There must be one data structure in memory for each
device. This is the purpose of the device static storage. Thus, the path
descriptor is used to control the logical path, while the device static storage is
used to control the physical device. The device driver is usually mainly
concerned with the device static storage, as the device driver has the job of
controlling the device. However, it may make use of some of the fields in the
path descriptor, as these may provide information about the current
configuration required for this particular I/O call.

Conversely, the file manager mainly makes use of the path descriptor for
variables storage, as the file manager has the job of managing the logical
path - for example, input line editing for a "read line" system call. But it may
make use of some device static storage fields. For example, RBF maintains
some disk structure information in the device static storage, as it is needed
by all path-related functions using the device.

The kernel is responsible for allocating and de-allocating the device static
storage for an I/O sub-system. The kernel allocates a new device static
storage when a new device descriptor is installed in the device table (by the
I$Attach system call, made implicitly when a path is opened) if either:

• The port address in the device descriptor is different from any other
in the device table.

Or:

• Another device table entry has the same port address in its device
descriptor, but a different device driver.

That is, the kernel considers this to be a new device if there is no device
already in the device table using the same port address and device driver.
Thus the kernel ensures that there is a separate device static storage
allocated for each device currently in existence in the device table. Note that

259

DEVICE DRIVERS

by specifying a different device driver or by adjusting the port address in the
device descriptor the programmer can coerce the kernel into allocating a
separate device static storage for what may in fact by the same I/O interface.
This is used in the SCSI driver system, where multiple drivers use the same
I/O interface, and in the drivers for dual serial port chips, where separate
"incarnations" of the driver must be created for each channel of the chip
(because the SCF file manager does not support multi-channel drivers).

Conversely, the kernel permits multiple device table entries (for different
device descriptors) that refer to the same device (they use the same device
driver and port address). These "alias" device descriptors may be used to
manage separate "channels" on the same device - such as multiple floppy
disk drives attached to one controller - or to select different configurations
for the device.

The device static storage comprises three or four parts. The first part is
defined by the kernel - its size and usage is the same for all devices. Note
that some fields are not used by the kernel - they have been defined for the
convenience of the file manager and device driver writers, because they are
required by many file managers and device drivers. This is an example of
how Microware has provided a comfortable environment for the device driver
writer, to try and limit the extent to which the programmer must learn about
the operating system before writing a device driver. (Nonetheless, it is
strongly recommended that you learn as much as possible about the
operating system before writing a device driver.)

Following the kernel section, the file manager may (and usually does) require
its own storage. The size and usage depends on the file manager, and is
defined by the file manager writer. This part will be the same for all devices
controlled through the same file manager. If the file manager supports
multi-channel devices (for example, four disk drives attached to one
interface) it will also usually require an area of storage for each channel,
known as a drive or channel table. Therefore the third part of the device
static storage - which exists only if the file manager supports multi-channel
devices - contains the drive tables. This is simply an array of structures
(drive tables), one for each channel, usually indexed by a logical drive or
channel number (base zero). Typically the file manager will be capable of
supporting a large number of channels, but on any given device the actual
number will be far fewer. Therefore to conserve memory the size of the array
is determined by the device driver (which knows how many channels the
hardware will support) rather than the file manager.

260

DEVICE DRIVERS

The last part (highest memory address) of the device static storage is the
storage area required by the device driver. Its size and usage is determined
by the device driver writer. It effectively comprises the static variables of the
device driver. It is defined using the normal statements for static variable
definition in the source files of the device driver, whereas the kernel and file
manager parts are defined in separate source files, as described below. The
total size of the device static storage for the kernel to allocate is taken from
the memory size entry in the device driver module header (M$Mem). It is
the sum of the kernel, file manager, and device driver requirements. The size
is in the device driver module header because the device driver is at the
bottom of the tree, so the total size is only known when the device driver is
created. It is calculated by the linker when creating the device driver module.

To simplify this operation, Microware provides pre-prepared definitions of
the kernel and file manager storage, already assembled, to give the static
storage (vsect) definitions required to reserve this storage. They need only
be included at link time when creating the device driver. For example, when
linking an SCF device driver:

$ 168 ../LIB/scfstat.1 RELS/sc6850.r -1=../LIB/sys.1
-O=OBJS/sc6850

and when linking an RBF device driver for a device supporting two drives:
$ 168 ../LIB/drvs2.1 RELS/rbl772.r -1=../LIB/sys.1
-O=OBJS/rbl772

Note that 'drvs2.1' is simply a merging of three ROFs:
$ chd /dd/LIB; merge rbfstat.r drvstat.r drvstat.r
>drvs2.1

'drvs2.F reserves storage for the kernel and RBF, and for two RBF drive
tables (as this device driver supports two drives on one interface).

The file 'LIB/scfstat.l' is an assembly of the file 'DEFS/scfstat.a', and is used
for device drivers that work with the SCF file manager. The file
'LIB/rbfstat.r' is an assembly of the file 'DEFS/rbfstat.a', and is used for
device drivers that work with the RBF file manager. It defines the storage
required by the kernel and RBF. An RBF device driver must also reserve
device static storage for the RBF drive tables, using the file 'LIB/drvstat.r'
(which is an assembly of the file 'DEFS/drvstat.a') once for each drive to be
supported. The files 'LIB/drvsl.l', 'LIB/drvs2.1', and 'LIB/drvs4.1' contain
'LIB/rbfstat.r' followed by one, two, or four copies (respectively) of
'LIB/drvstat.r', for device drivers supporting one, two, or four drives. By
merging 'LIB/rbfstat.r' and multiple copies of 'LIB/drvstat.r' you can create
versions for any number of disk drives.

261

DEVICE DRIVERS

Note that the copy of 'LIB/rbfstat.r' must come first in the "merge", as the
definitions for the kernel and file manager storage must precede the drive
tables. Similarly, in the linker command line the appropriate static storage
definition file (such as 'LIB/scfstat.l') must precede the driver ROF (or ROFs),
as all of the kernel and file manager storage must precede the driver storage
in the device static storage memory. The linker builds the final static storage
definitions from the static storage definitions in the ROFs strictly in the
order that the ROFs appear on the linker command line. This ensures that
kernel references into the device static storage are correct, even though the
kernel does not know the structure (or even the existence) of the file
manager and driver parts of the device static storage. Similarly, file manager
references are correct, even though the file manager does not know the
structure of the driver part.

As described above, the source files for these storage definitions are in the
'DEFS' directory (typically '/dd/DEFS'), as is a "make" file ('DEFS/makefile')
to assemble and merge them. The equivalent files for the SBF file manager
are 'LIB/sbfstat.r' (for the kernel and file manager definitions), and
'LIB/sbfdrvtb.r' (for one drive table), although full source code is not provided
with OS-9. The SBF static storage structures are fully defined in
'DEFS/sbfdev.d', and in the files listed in Appendix B.

After allocating a new device static storage the kernel clears it to zeros. This
is a very convenient software flag mechanism. If the initialization routine of
the device driver aborts due to an error, the termination routine is always
called by the kernel. The termination routine can "clear up" what resource
allocation or device initialization the initialization routine managed to do
before aborting, by looking to see if initialization flags are non-zero. For
example, a field might be used to store the address of an allocated memory
buffer, and will only be non-zero if the memory was actually allocated.
However, the kernel does not support full C-like static storage initialization
of the device static storage.

The device driver is not restricted to using only the device static storage for
its variables and buffers. It can allocate additional memory as required using
any of the available memory allocation mechanisms, including the general
memory allocation system call (F$SRqMem), coloured memory, and data
modules. Unlike the management of a program's memory allocations, the
kernel does not keep track of memory allocated by a device driver (or any
operating system component). It is the responsibility of the termination
routine of the device driver to ensure that all such memory is de-allocated.
The same philosophy applies to other resources that the device driver may
allocate, such as creating an event or opening a path.

262

DEVICE DRIVERS

12.3 PATH DESCRIPTOR

A path descriptor is a memory structure (always 256 bytes) used by OS-9 to
manage a path. Because the path concept is concerned with the logical
manipulation of data (data editing, filing structure, and so on), the path
descriptor variables in the first 128 bytes are mainly used by the kernel and
the file manager, not by the device driver. The second half of the path
descriptor is the "options section". It contains a copy of the options section of
the device descriptor on which the path was opened. The layout of the
options section is defined by the file manager writer, although the device
driver writer may define additional fields in the device descriptor (but
outside of the options section proper), pointed to by the offset value in the
M$DevCon field of the device descriptor extended module header.

The options section contains parameters used to select optional behaviour of
the file manager and device driver. For example, an SCF options section
contains all the line editing key codes, and other special characters, while an
RBF options section contains disk format parameters. The file manager may
also dynamically write additional fields at the end of the path descriptor
options section that are not defined in the device descriptor options section.
These fields are for the information of a program, which can read all 128
bytes of the path descriptor options section using a Get Status request with
the function code SS_Opt. For example, RBF puts a copy of the file name in
the PD_NAME field of the options section.

The options sections of the Microware file managers are described in the
OS-9 Technical Manual. The following paragraphs do not repeat those
descriptions. Instead, they attempt to clarify certain areas that have caused
difficulty to users in the past.

12.3.1 RBF Path Descriptor

RBF is not concerned with the physical layout of the disk (cylinders, surfaces,
physical sector numbering14). It uses a logical sector numbering convention
in which sector 0 is the first sector on the disk, and the other sectors are
numbered sequentially. Some controllers (such as SCSI controllers) use the
same convention, so the device driver does not need to translate. Otherwise,

14 Disk drive terminology is often confused. A disk drive will have one or more disks on the
same spindle. Each disk has one or two data surfaces. Data is read and written in concentric
rings on each surface, using a read-write head on each surface. Each ring on each surface is a
track, while the rings on all surfaces at the same radius are known as a cylinder. Therefore the
total number of tracks equals the number of cylinders multiplied by the number of surfaces.
Within each track the data is subdivided into equal sectors, numbered from zero or one upwards
on each track.

263

DEVICE DRIVERS

the device driver must use the fields in the options section of the path
descriptor to convert the logical sector number (LSN) to a cylinder number,
surface (or head) number, and sector number. The calculation can be
somewhat complex. The following fields of the options section are relevant:

PD_DRV

PD_CYL

PD_SID

PD_SCT

PD_TOS

PD_TOffs

PD_S0ffs

PD_LUN

PD_LSNOffs

PD_TotCyls

PD_CtrlrIO

Logical drive number. This is the number used (base zero) by RBF to index
into the drive tables. It may also be used by the device driver as the physical
drive number, if the drives are numbered sequentially from zero upwards
(but see PD_LUN).

Number of cylinders available for data (for LSN validity check, and
partitioning).
Number of data surfaces (tracks per cylinder).
Number of sectors on each track, except track zero (cylinder zero, surface
zero).
Number of sectors on track zero.
First physical cylinder (not track) to use. After calculating the cylinder
number (base zero) from the LSN, this value must be added to the cylinder
number to form the true physical cylinder to access. This feature is used to
skip cylinder zero on the Microware Universal floppy disk format, as
different controllers place different restrictions on the format used on track
zero.
First sector number on each track (zero or one). After calculating the sector
number (base zero) within the track from the LSN, this value must be added
to the sector number to form the true sector number to access. This feature
is used because certain disk formats number the sectors on a track from
zero, while others number the sectors from one.
Physical drive number. If the interface is connected to multiple controllers
(as with SCSI), then this is the drive number on that controller. This field
may be equal to PD_DRV if only one controller is supported by the
interface, and the drives are numbered sequentially from zero. This is
typically the case for a simple floppy disk controller.
Offset for logical sector numbers. The driver must add this value to the LSN
supplied by RBF before using the LSN in a controller command, or
converting it to physical parameters. This allows support for partitioning on
a hard disk.
Total physical cylinders on the disk (for formatting, and LSN validity check).
This value is usually equal to PD_CYL plus PD TOffs (or the sum of these
for all partitions) plus any allowance for cylinders reserved for automatic
defect handling by the disk controller.
Controller number. This field is only used if the interface can be connected
to multiple controllers (as with SCSI).

In addition to the parameters described above, other format variables are
specified in the path descriptor options section:

264

DEVICE DRIVERS

PD-TYP

PD_DNS

PD_Rate

PD_SSize

Disk type flags. If bit 7 is set, the disk is a hard disk, otherwise it is a floppy
disk. This bit is only of importance for controllers that support both hard
and floppy disk drives. Prior to OS-9 version 2.4, bit 0 was set for an 8" disk,
and reset for a 5!4" (or 3/2") disk. An 8" disk requires a rotational rate of
360rpm, and a data rate (MFM) of 500kbps, while a 514" disk requires a
rotational rate of 300rpm, and a data rate (MFM) of 250kbps. Note that as
far as the floppy disk controller and device driver are concerned, there is no
difference between a 5!4" disk and a 3‘/j" disk. As more disk formats were
developed this became restrictive, and from OS-9 version 2.4 onwards bit
zero is not used. Bits 1:4 define the disk size:
Value Disk size

1 8’disk
2 5%" disk
3 3‘/l" disk

while the rotational speed and data rate are defined in the new field
PD Rate. If bits 1 to 4 of PD TYP are zero, the driver knows that the
descriptor is from before OS-9 version 2.4, and so bit zero of PD_TYP is
used, and PD_Rate is not defined.
Two further bits are defined. If bit 5 is set, track zero (cylinder zero, surface
zero) is double density, otherwise it is single density. This allows the support
of old formats that have single density (FM) on track zero, and double
density (MFM) on other tracks. Finally, for a hard disk (bit 7 is set), if bit 6 is
set, the hard disk is removable.
Data density flags - if bit 0 is set, the disk is double density (MFM encoding),
otherwise it is single density (FM encoding). Single density is used only
rarely today, in support of old formats on products using historical standards.
This field is defined for OS-9 version 2.4 onwards. Bits 0:3 specify the
rotational speed:
Value Speed

0 300rpm (3!4* or 514")
1 360rpm (8", or PC-AT 514")
2 600rpm

and bits 4:7 specify the data rate:
Value Data rate

0 125kbps (37/ or 5!4" single density only)
1 250kbps (37/ or 514" double density, or 8“ single density)
2 300kbps (ditto, but rotating at 360rpm)
3 500kbps (high density, or 8" double density)
4 1000kbps
5 2000kbps
6 5000kbps

Combinations of these fields allow the support of all commonly used floppy
disk formats. However, not all controllers and disk drives will support all
rotational speeds and data rates.
Number of bytes per sector. This is the block size RBF will assume when
requesting data transfers. Prior to OS-9 version 2.4 only a value of 256 was
permitted. From OS-9 version 2.4 onwards any value that is a power of 2,
from 256 to 32768, is permitted. Also, when opening a file, and before

265

DEVICE DRIVERS

performing any data transfers or allocating any data buffers, RBF will make
a Get Status call to the driver with the function code SSVarSect This
gives the driver the opportunity to check or alter the value in PDSSize to
correspond to the medium in use. For example, a device descriptor for a
SCSI hard disk drive may have zero in this field. The device driver updates
the field with the actual disk sector size returned from the drive controller in
response to the SCSI READ CAPACITY command.
If the driver returns no error in response to the SS VarSect call, RBF
assumes the value in PDSSize is the correct sector size to use. If the driver
returns the error E$UnkSvc (unknown request), RBF assumes a default
sector size of 256 bytes. (Any other error code will cause RBF to abort the
opening of the file with an error.) Having determined the sector size, RBF
writes it to the path descriptor options section field PDSctSiz (a long
word). It is this value that RBF uses for subsequent operations, and it can be
read by a program, using the Get Status request SS Opt to return a copy of
the options section.

Microware supports a range of floppy disk formats. Although the preferred
distribution format is the Universal format (which does not use cylinder
zero), this is a recent standard, and many OS-9 systems use other - older, or
more conventional, or higher data density - formats. The user may therefore
have a number of different "alias" device descriptors for the same floppy disk
drive, specifying different format parameters. The Microware-defined
format codes depend on the density of track zero - single density (FM) or
double density (MFM) - and the number of the first sector on each track
(sector offset). In addition, the Universal format (code 38U0) does not make
use of cylinder zero - the cylinder offset is one. The commonly used formats
are:

Format code Track 0
density

Sector offset Cylinder offset

3803 FM 0 0
3807 MFM 0 0

38W7 MFM 1 0

38U0 MFM 1 1

The format codes shown above are for 3‘a" disks. The initial "3" of the format
code is changed to "5" for 5'/<" disks. All of these formats use double density on
all tracks (other than track zero for 3803 format), 80 cylinders, and 16
sectors per track (10 sectors on track zero for 3803 format).

A device driver written to support a wide range of formats will need to take
account of all of the above parameters when initializing the disk controller,
and when performing data transfers. There is the risk for a removable disk

266

DEVICE DRIVERS

(such as a floppy disk) that the user will insert a disk of a different format. In
this case the user will normally access the disk using a different device
descriptor, with the appropriate format parameters. The device driver must
check at each transfer (or perhaps only when a path is opened - RBF makes
the Set Status call SS_Open to the driver) whether the format parameters
have changed, requiring a re-initialization of the disk controller.

One simple way of doing this is to keep a record (in the device static storage)
of the address of the device descriptor last used to initialize the controller.
The address of the device descriptor can be taken from the device table
entry. The address of the device table entry for this device is in the path
descriptor location PD DEV (it is set up by the kernel), and the field
V$DESC in the device table entry contains the address of the device
descriptor. If the current device descriptor address is different from the one
last used to initialize the controller, a re-initialization is required. This is not
foolproof - the user might change the parameters in an already loaded device
descriptor, or unlink a device descriptor and load a new one at the same
address - but it is simple and effective. The alternative is to check each one
of the format parameters against the values last used to initialize the
controller.

Certain fields of the options section are used to control the behaviour of RBF
and the device driver:

PD_VFY Disable verify after write. If this field is non-zero the device driver should
not perform a verify (read) of each sector after writing it. Verify-after-write
is only used with disk structures that do not support error detection and
correction - usually floppy disks. Other device drivers (for example, for SCSI
hard disk drives) will ignore this field.

PD_SAS Minimum segment allocation size. When RBF is asked to extend a file (for
example, by a write at the end of the file), if the extension is shorter than
this value (in sectors) RBF will allocate this many sectors to the file. When
the file is closed, RBF trims back the file to its true length (provided the file
pointer is at the end of the file). This reduces the fragmentation problem
caused by two files “leap-frogging" each other as they are written to.

PD_Cntl A word of bit flags, having the following effects when set:
0 - enable formatting and writing to sector zero. If this bit is not set, the
driver should return an error E$Format if it is requested to format the disk,
or to write to sector zero. Hard disk device descriptors are usually format
protected in this way, with a special device descriptor being loaded in order
to format the disk, or set a new boot file (the os9gen utility writes the
address of the boot file to sector zero).
1 - enable multi-sector transfers. If this bit is not set, RBF will only request
the device driver to transfer one sector with each request. This bit should be
reset for controllers that can only transfer one sector at a time.

267

DEVICE DRIVERS

3 - the device driver can determine the disk capacity. If this bit is set, the
device driver supports the SS DSize Get Status call, returning the disk
capacity in sectors.

PD_MaxCnt Maximum transfer size. RBF will not ask the device driver to transfer more
than this number of bytes in one request. This may be set to a limit imposed
by a DMA controller, for example. If the controller cannot transfer more
than a certain number of sectors in one request, either this field must be set
to that number of sectors multiplied by the sector size, or the device driver
must be able to divide up a large request into manageable pieces.

The RBF path descriptor variables section (the first 128 bytes of the path
descriptor) contains three fields of interest to the device driver writer:

PD_DEV Address of the device table entry for the device on which the path was
opened. The device driver can use this pointer to get the address of the
device descriptor (field V$DESC in the device table entry).

PD_DTB Address of the drive table. RBF multiplies the logical drive number
(PD DRV) by the size of one drive table, and adds it to the address of the
first drive table in the device static storage, to form this address. The device
driver must copy the first 22 bytes of LSN zero to the drive table at this
address whenever LSN zero is read or written.

PD_BUF Buffer address. When RBF calls the read or write routines of the device
driver, this field contains the address of the memory to read to or write from.

12.3.2 SCF Path Descriptor

The SCF path descriptor options section is mainly composed of special key
codes for line editing and keyboard signals. If a key code is set to zero, an
incoming character is not checked against the key code. This permits line
editing functions to be disabled. Note that the xmode utility allows the user
to modify the options section of an SCF device descriptor in memory, while
the tmode utility modifies the path descriptor options section for path 0, 1, or
2 (standard input, standard output, and standard error) of its inherited
paths. Certain other options fields modify the line editing behaviour of SCF.
Of these, the most commonly used are:

PD_EKO Enable echo. If this field is non-zero, SCF echoes each character as it is read
during a "read" (I$Read) or "read line" (I$ReadLn) request.

PD_ALF Automatic line feed. If this field is non-zero, SCF outputs a line feed
character ($0A) after each carriage return character ($0D) in a "write line"
(I$WritLn) request.

PD_PAU End of page pause. SCF counts carriage return characters ($0D) as they are
written by "write” and "write line" requests. It resets the count if any "read"
or "read line" request is made. If this field is not zero, when the count

268

DEVICE DRIVERS

reaches the value in PD_PAG SCF does not output the carriage return
character until a character has been received. Note that this applies even to
characters written by "write" requests, so it is important to clear this field
when sending binary data.

PD_EOR End of record character (usually [CR]). If this field is non-zero, SCF
compares every incoming character with this field, and terminates a "read"
or "read line" request when a character matches this field. Note that if echo
is enabled (see PD EKO) the carriage return character ($0D) is echoed in
response to this character being received.

PD_EOF End of file character (usually [ESC]). If this field is non-zero, and a
matching character is read as the first character of a "read" or "read line"
request, SCF aborts the request with an "end of file" error (E$EOF). For a
"read line" request, the end of file condition is reported if the first character
in the edit buffer matches this field, even if other characters have previously
been entered and then erased.

PD_PSC End of line pause key code (usually [*W]). SCF copies this field to the
V_PCHR field of the device static storage. The "data received" interrupt
service routine of the device driver should compare each incoming character
with the V_PCHR field (if non-zero). If a match is found, the device driver
sets the V PAUS field of the device static storage. When SCF is about to
write a carriage return character from a "write" or "write line" request, it
checks the V_PAUS field. If non-zero, SCF waits for a character to be
received (other than a match for PD_PSC) before outputting the carriage
return.

PD_I NT Interrupt key code (usually [*C]). SCF copies this field to the V INTR field
of the device static storage. The device driver "data received" interrupt
service routine should check each incoming character against this field (if
non-zero). If a match is found, the driver sends an interrupt signal (3 -
S$Intrpt) to the last process to use the device. The process ID of this last
process is copied by the kernel to the field V_LPRC in the device static
storage. (V LPRC is set to zero by SCF if the process has died, and it has no
parent. If it has a parent with a path open on the same device, the parent's
ID is copied to V_LPRC). When SCF sees this character as part of a "read
line" request, it acts as if the "delete line" key code had been received.

PD_QUT Abort (or quit) key code (usually [*E]). Similar to PD_INT, SCF copies this
field to the V QUIT field of the device static storage, and the device driver
sends an abort signal (2 - S$Abort) if a matching character is received.

Two fields - PD_XON and PD_XOFF - are used for software flow control.
They usually have values $11 and $13 respectively ([’Q] and [*S]) - the
ASCII XON and XOFF characters. SCF copies these fields to the V_XON and
V XOFF fields of the device static storage, and the device driver uses these
values (if non-zero) as the character codes to restart and stop transmission
(respectively) in both directions. That is, if an XOFF character is received,
the driver suspends transmission until an XON character is received.
Conversely, if the driver's receive buffer is becoming full (it has reached a
"high water mark"), it sends an XOFF character, and then sends an XON

269

DEVICE DRIVERS

character when the buffer has emptied by some pre-determined amount (it
is reduced to a "low water mark").

Lastly, the device driver uses two fields to determine the desired
configuration of a serial port (if that is what is being controlled):

PD_PAR Character format. The bits of this field are used as follows:
0:1 parity generated and expected:
0 none
1 even
3 odd

2:3 bits per character:
0 8
1 7
2 6
3 5

4:5 number of stop bits:
0 1
1 1.5
2 2

Not all devices will be able to support all character formats.
Typically a device driver will configure the device to automatically pause
transmission if the CTS handshake input is negated (relying on the fact that
in most circuit designs this input will float asserted if not connected), and
will assert the RTS (or DTR) handshake output. The driver will also
configure the device to generate an interrupt when the DCD handshake
input changes state (relying on the fact that in most circuit designs this
input will float securely to either the asserted or negated condition if not
connected). However, some device drivers (not Microware's) also use bits 6
and 7 to control the use of the hardware handshake lines:

6 set to disable hardware handshake (RTS/CTS)
7 set to disable recognition of DCD input

PD_BAU Baud rate code - see the table of baud rates below.

Code Rate Code Rate
0 50 9 2000
1 75 10 2400
2 110 11 3600
3 134.5 12 4800
4 150 13 7200
5 300 14 9600
6 600 15 19200
7 1200 16 38400
8 1800 255 external

An "external" baud rate is set in hardware, and is not controllable by the
device driver. Not all devices will be able to support all baud rates. Note that

270

DEVICE DRIVERS

no means is given of separately defining the baud rate for receive and
transmit.

The device driver for a serial port will use these values to configure the
interface during the driver's initialization routine. However, a program may
wish to dynamically change the configuration on an open path. The program
can modify these fields in the path descriptor options section using the Set
Status system call with the SS_Opt function code (the ss opt() C library
function). SCF will copy the new values to the path descriptor options
section, and then pass the call on to the driver. On receiving this call the
driver should check whether the device configuration fields in the path
descriptor have changed since the last time the interface was initialized. If
so, the driver should re-initialize the interface.

If the device driver is controlling an "intelligent" communications board, the
board may also support the detection of the flow control and signal
characters. For this type of device, the driver should also check to see
whether these fields have changed. If any of the configuration fields have
changed, the driver should re-initialize the board.

While this dynamic re-configuration capability of the device driver is
desirable, early Microware example SCF device drivers did not provide this
feature. As a result there are many SCF device drivers in existence that take
no notice of changes to the device configuration fields of the path descriptor.

If a device descriptor or path descriptor options section specifies a device
configuration that the device (or the device driver) does not support, the
device driver should return a "bad mode" error (E$BMode).

12.4 SYMBOLIC DEFINITIONS
Microware have provided symbolic definitions in both C and assembly
language for the structures and constants likely to be used by a device driver.
These files are all in the 'DEFS' directory - it is strongly recommended that
you study all of these files carefully before writing a device driver. The
assembly language files are pre-assembled to make the library 'LIB/sys.l'.

Therefore a device driver written in assembly language does not need to pull
in (use assembler directive) any of these files - the references are resolved at
link time. Device drivers written in C will need to #include the relevant
files. A typical list for an RBF device driver might be:

271

DEVICE DRIVERS

rbf.h

MACHINE/reg.h

procf d.h

path.h

module.h

errno.h

signal.h

sg_codes.h

Path descriptor options section structure.
Processor register definitions.
Process descriptor structure.
Path descriptor variables section format.
Module header structures (including device
descriptor).
Error codes.
Signal codes.
Set Status and Get Status function codes.

Note that the order of the #include statements for these files is important,
as some files declare structures that are used in other files. The only
operating system structure for which there is not a proper C definitions file
is the System Globals. The file 'DEFS/setsys.h' does give the offsets within
the System Globals structure to each field, but the System Globals is not
defined as a structure, and the fields are not "typed".

In this book the symbolic names for the OS-9 error codes are sometimes
given using the assembly language definitions in the file 'DEFS/funcs.a', and
sometimes given using the C language definitions in the file 'DEFS/errno.h'.
The symbol names are the same in both sets of definitions, except that the C
definitions start with E_ and use upper case only, while the assembly
language definitions start with E$ and use both upper and lower case. For
example, the C symbol for the "not ready" error (code 246) is E NOTRDY,
while the assembly language symbol is E$NotRdy.

12.5 REGISTER USAGE
OS-9 was originally written completely in assembly language, although parts
are now written in C. Therefore parameters are passed to and returned from
the device driver in processor registers. In the following descriptions, as
elsewhere in this book, parentheses around a register name mean "points to",
and a suffix of ".b", ".w", or ".1" gives the size of the object in the register as
byte, word (16 bits), or long (32 bits). Where the object is smaller than the
register containing it, the object is always in the low order bits of the
register, starting with bit zero.

Because the initialization and termination routines of the device driver are
called directly by the kernel (as part of the I$Attach and I$Detach system
calls), the calling convention to these routines is defined by the kernel, and is
therefore the same for all drivers:

272

DEVICE DRIVERS

(al) Device Descriptor module
(a2) Device Static Storage
(a4) Process Descriptor of calling process
(a6) System Globals

The calling conventions for the other routines (usually read, write, get status,
and set status) are determined by the file manager, and may vary, especially
for the read and write routines. Usually, however, the following conventions
are adhered to:

(al) Path Descriptor
(a2) Device Static Storage
(a4) Process Descriptor of calling process
(a5) Caller's register stack frame
(a6) System Globals

The other registers may contain other parameters. The return convention for
read and write varies according to the file manager. The error return
convention for all of the functions is (usually) the same as that used
throughout the operating system: the carry flag of the Condition Codes
register is set if there was an error, in which case dl.w contains the
appropriate OS-9 error code.

The kernel saves all the registers it uses before calling the initialization and
termination routines of the device driver, except for the a6 register when
calling the termination routine. Therefore the driver need only preserve the
stack pointer and the high byte of the status register (and a6 in the
termination routine). In general, file managers also save all the processor
registers they use before calling the device driver functions. This is true of
SCF and RBF. However, other file managers may only save certain registers,
in order to speed up calls to the device driver, so it is important to check the
documentation on the file manager.

12.6 DEVICE DRIVER ROUTINES
A device driver is a separate OS-9 module, so the addresses of its routines
are not known to the kernel and file manager. However, the kernel and file
manager need to be able to call the device driver routines. To achieve this,
the "execution entry offset" (M$Exec) in the module header of the device
driver gives an offset from the start of the module to a table of offsets from
the start of the module to each of the routines.

273

DEVICE DRIVERS

Two routines are absolutely required - initialization and termination - as
these are called by the kernel when an I/O sub-system is created and
deleted.

Any other routines are only called by the file manager, and their presence or
absence is a matter for the file manager specification. File managers can
specify any number of device driver routines for any purpose.
Conventionally, however, the file manager requires four routines, making six
in total. The code fragment below shows a typical psect statement and
routine offset table for a device driver:

use /dd/DEFS/oskdefs.d
Typ_Lang equ (Dr1vr<<8)+0bJct module type and language
Att_Revs equ ((ReEnt+SupStat)<<8)+0 attributes and revision
★ number
Edi t1on equ 1 software edition number

psect SC68681.Typ .Lang.Att_Revs,Ed1t1on.0,EntryTable

EntryTable dc.w Init Initialize
dc.w Read input data
dc.w Wri te output data
dc.w GetStat wildcard call (IJGetStt)
dc.w SetStat wildcard call (ISSetStt)
dc.w Term termlnate
dc.w 0 exception handler (see below)

Notice that the last parameter to the psect statement is the label of the
routine offset table. It is from this statement that the linker takes the value
to put in the "execution entry offset" field of the module header. Note also
that the positions of the initialize and terminate routine offsets within the
table are fixed, as these routines are called by the kernel. Therefore if the file
manager does not require one or more of the read, write, get status, or set
status routines these entries must still exist (replacing the routine label with
zero), and if the file manager needs additional routines their offsets must be
added to the end of the table shown above.

Microware have indicated that future versions of the kernel may implement
an additional "exception handler" routine, using a seventh table entry as
shown above. This entry point will be called if a hardware exception (such as
bus error) occurs during driver execution.

12.6.1 Initialize

This routine is called directly by the kernel. It is only called when the I/O
sub-system is being created - that is, a new device static storage has been
allocated. It is not called on the first usage of each channel on a

274

DEVICE DRIVERS

multi-channel device. The kernel calls the initialization routine as part of
the I$Attach system call. This call can either be made explicitly by a
program (such as the iniz utility), or implicitly whenever a path is opened on
the device. The initialization routine may be called more than once as the I/O
sub-system is terminated and then re-created, but there will always be an
intervening call to the termination routine as part of the termination of the
I/O sub-system.

Some I/O devices must only be initialized once after reset - a repetition of
the reset would cause problems. There is no operating system mechanism to
determine whether this is the first time this I/O sub-system has been
brought into being since reset. If it is important to know this, the
initialization routine can use a data module. It attempts to create a data
module whose name is constructed from the device port address. If there is
no error, the data module did not already exist (otherwise a "known module"
error E_KWNMOD would be returned), so this is the first time the I/O
sub-system is being created.

This data module mechanism is also useful for sharing hardware with one or
more other drivers. Common variables (such as the current state of
write-only registers) can be held in the data module. Also, if the module does
not already exist on initialization the driver knows it is the first user and
must initialize the hardware. If the initialization and termination routines
maintain a use count in the data module, the termination routine can know
that it is the last user, and must terminate the hardware.

The initialization routine has a number of responsibilities. It must:

a) Initialize the device static storage as needed. Usually the
driver only initializes its own fields of the device static
storage, but it may initialize other fields to pass device
information to the file manager. For example, an RBF driver
sets the field V NDRV to the number of drives supported
(which must be no larger than the number of structures in
the drive table), and the DD TOT field of each drive table
structure to a non-zero value (to permit RBF to read LSN
zero).

b) Initialize the hardware, ready for subsequent calls to the
other routines, such as read and write. A device driver
expecting unrequested data to be received (such as an
asynchronous serial port) must also set up the device ready
for data to be received. For example, the interface chip would

275

DEVICE DRIVERS

be set up to generate interrupts when characters are received.

c) Install the interrupt service routine in the polling table
(F$IRQ system call) if the device is to be interrupt driven. If
the device driver is to receive interrupts on more than one
vector, it will need to install multiple interrupt service
routines. OS-9 places no limit on the number of interrupt
service routines one driver can install.

The initialization routine is passed the address of the device descriptor
module, not the address of the path descriptor (there may be no open path if
an explicit I$Attach system call is being made). However, the Microware
definitions in the 'LIB/sys.l' libraiy only include definitions for the offsets
into the options section of the path descriptor - there are no symbolic
definitions for accessing the options section of the device descriptor. As the
two options sections have (by definition) the same structure, the programmer
can use the same symbols - with a constant offset - to access the options
section of the device descriptor. For example:

move.b PD_BAU+M$DTyp-PD_OPT(al),dO

will access the baud rate code in the device descriptor (assuming the al
register is pointing to the device descriptor), while:

move.b PD_BAU(al),d0

will access the baud rate code in the path descriptor (assuming the al
register is pointing to the path descriptor). This works because M$DTyp is
the offset from the start of the device descriptor to the first entry in the
options section, while PD_OPT is the offset from the start of the path
descriptor to the start of the options section.

The device driver should not sleep as part of the initialization routine. The
kernel does not build the device table entry until the initialization routine
returns, so a concurrent I/O call from another process on the same device
would cause a recursive call to the I$Attach system call and the
initialization routine of the device driver. Also note that the V_BUSY field of
the device static storage is not set to the process ID of the calling process at
this time (see below), as this is a function of the file manager.

12.6.2 Terminate

The termination routine is essentially the converse of the initialization
routine. It is called directly by the kernel as part of the dismantling of an I/O
sub-system, from within the I$Detach system call. The kernel will only call
the termination routine when the device use count (in the device table entry)

276

DEVICE DRIVERS

has been decremented to zero. That is, there are no paths open on the device,
and any explicit calls to I$Attach (and I$ChgDir) have been complemented
by an equal number of explicit calls to I$Detach. The kernel will always
de-allocate the device static storage after calling the termination routine,
and (in all versions of the kernel to date) ignores any error returned by the
termination routine.

The termination routine must:

a) Wait for any "write-behind" activity to finish. For example,
characters may be waiting in a buffer to be transmitted out of
a serial port under interrupt, perhaps paused by software or
hardware handshake.

b) Shut down the hardware. In particular, the hardware must be
disabled from generating any interrupts or other autonomous
behaviour.

c) De-allocate any resources allocated by the device driver.
Examples are buffer memory allocated, data modules created
or linked to, paths opened, and events created or linked to.

d) Remove the driver from the interrupt polling table, using the
F$IRQ system call. Each interrupt service routine that the
driver installed must be un-installed.

Note that if the initialization routine returns an error to the kernel, the
I$Attach system call will call the termination routine before de-allocating
the device static storage.

12.6.3 Read

As mentioned above, the read routine (if it exists) is only called by the file
manager. Therefore the purpose of the routine and the parameter
convention used when calling it are determined by the file manager writer.
In general it is used to get data from the device. As an illustration, for this
and the other routines the purpose and parameter convention are shown for
the SCF and RBF file managers. These two file managers adhere to the
general parameter convention described above, so only the additional
parameters are described below.

277

DEVICE DRIVERS

□ The Sequential Character File Manager (SCF)
Purpose: read one character.
Parameter convention:

Passed: nothing
Returns: dO.b = character read

SCF drivers usually maintain a circular input buffer in the device static
storage (or dynamically allocated in the initialization routine) filled under
interrupt. The interrupt service routine for the "data received" interrupt
takes the character from the chip and puts it in the circular buffer. The
driver read routine takes a character from this buffer, waiting (by sleeping) if
the buffer is empty. The interrupt service routine is responsible for waking
up the driver when a character is received, and for detecting and acting on
certain special characters - flow control (XON and XOFF), "interrupt"
(usually [“ C]), "quit" (usually [’£]), and "end-of-line pause" (usually [*W]).

The "data received" interrupt service routine is also responsible for sending
the "pause" flow control character (XOFF) when the buffer is becoming full -
usually at a "high water mark" of three quarters full. Conversely, the read
routine is responsible for sending the "restart" flow control character (XON)
if a "pause" had been requested and the buffer is now sufficiently empty -
usually at a "low water mark" of one quarter full.

Characters may be received with errors. For example, parity checking may be
enabled for an asynchronous serial port, and a character may arrive with
incorrect parity. As this error status is normally supplied by the interface
chip with each character, the "data received" interrupt service routine must
save the error status as it reads each character from the chip. The standard
Microware drivers simply bitwise OR the error status of each character into
the V ERR field of the device static storage. The interrupt service routine
also sets a bit in this field if the input buffer overflows, so one or more
characters are lost. The read routine checks this field when returning a
character - if it is not zero, the routine clears the field and returns a "read"
error (E$Read).

Under this scheme the calling program is not able to determine which
character was in error. This is not important when simply reading from a
keyboard, but may be unsatisfactory for communications applications. A
device driver for such an application might maintain a second circular buffer
containing a status byte for each received character. When SCF requests a
character for which the status is not zero, the driver returns a "read" error
(E$Read), and saves the status in the device static storage field V_ERR.
Such a driver could also support the Get Status call function SS_ELog (read

278

DEVICE DRIVERS

error log), returning a copy of the latest saved error status, permitting the
program to determine the type of error.

If no characters are available in the input buffer, the read routine must
sleep. It is then woken by the interrupt service routine when a character
arrives. This is described in detail below in the discussion of interrupts. The
read routine may also be woken from its sleep by a signal from another
process (sent to the process that called the driver), or by a "quit" or
"interrupt" signal sent to the process by the interrupt service routine on
receipt of one of the special key codes. The read routine must decide whether
to go back to sleep and wait for a character, or to abort the read with an
error. A typical device driver for terminals and printers will abort only if the
signal received was a "deadly" signal. Prior to OS-9 version 2.4 the deadly
signals were signal 0 (the kill signal - S$Kill), signal 2 (the quit signal -
S$Abort), and signal 3 (the interrupt signal - S$Intrpt). From OS-9
version 2.4 onwards all signals below 32 are considered deadly, except signal
1 (the wakeup signal - S$Wake).

The use of an input buffer filled under interrupt provides a "type ahead"
capability. That is, provided the device is active (a path is open to the device,
or the device has been explicitly initialized), characters can be received in
advance of any read request from a program. This allows a user to type in a
command in advance of the previous command completing. More
importantly, it reduces the real-time response requirement of a program
that is receiving data. Typically an SCF device driver has an input buffer of
80 characters. Thus a program can delay 80 character times (about 80ms at
9600 baud) before reading the data without losing any data.

There is no requirement under OS-9 that device drivers must be interrupt
driven. The read routine of an SCF device driver could simply poll the status
register of the interface chip until a character had been received, and then
return that character to SCF. However, this would destroy the multi-tasking
capability of the operating system, as rescheduling does not take place while
a system call is executing - the system call must go to sleep or exit to allow a
reschedule.

An alternative approach is to poll the status register and, if no character is
available, to sleep for one tick. Sleeping for one tick requests a reschedule,
but the process remains active. This allows another active process (if there is
one, and it is of sufficient priority - see the chapter on Multi-tasking) to
become the current process, otherwise the driver (or rather, the process
calling the driver) remains the current process, and continues to poll the
status register.

279

DEVICE DRIVERS

Clearly, the most efficient technique - both in terms of processor time usage,
and of speed of response to a received character - is to use interrupts.
However, the above description shows that OS-9 does not force any
particular style of operation on the device driver.

□ The Random Block File Manager (RBF)
Purpose: read one or more consecutive sectors from a disk.
Parameter convention:

Passed: dO.l = number of sectors
d2.1 = starting Logical Sector Number (base 0)
PDBUF(al) = memory to read to

Returns: nothing

Note: prior to OS-9 version 2.4 the number of sectors was in dO.b only, and
could not exceed 255. Now the number of sectors is only limited by the
PD MaxCnt field of the path descriptor, which sets a limit on the total
number of bytes RBF may ask the driver to transfer. The same change
applies to the write routine.

RBF is not concerned with the physical disk structure. It uses a Logical
Sector Numbering scheme (base zero). The device driver must (if necessary)
convert this to physical disk parameters, as described above in the section on
the Path Descriptor.

RBF is also not concerned with retries. If there is an error on reading, it is
up to the driver to decide whether to try again to read the sector (or sectors).
If the driver returns an error to RBF, then RBF will consider it to be an
unrecoverable error, and abort the filing operation, which may cause some
damage to the disk structure. The disk controller may do retries itself, in
which case the device driver will not itself implement any retries. SCSI hard
and floppy disk controllers typically operate in this way. For simple floppy
disk controllers the device driver may retry several times, occasionally
restoring (seeking to cylinder zero) and re-seeking, in case the problem is a
head misalignment.

On reading (or writing) LSN zero the driver also has the responsibility to
copy the first 22 bytes into the first part of the appropriate drive table
structure in the device static storage. (Note that RBF has pre-calculated the
address of the drive table structure for this drive, and placed it in the path
descriptor field PD_DTB.) This 22 byte structure contains information about
the disk structure, both logical and physical (refer to the OS-9 Technical
Manual section on the RBF Drive Table). A device driver may elect to use the
physical format fields of this structure in place of some of the fields of the

280

DEVICE DRIVERS

path descriptor when calculating cylinder, surface, and sector numbers. This
allows a driver to dynamically adapt to different disk formats (although of
course it does assume that the driver can read LSN zero). The useful fields
are:

DD_T0T Total data sectors on disk (maximum LSN plus 1) (for LSN validity
checking). RBF will not issue a request for an LSN greater than or equal to
this value. Therefore the initialization routine of the device driver must set
this field non-zero in each drive table structure, to allow RBF to read LSN
zero.

DD_TKS Sectors per track. (The field DD_SPT contains the same value as a word
rather than a byte).

DD_FMT Disk format flags. The bits have the following meanings when set:
0 double sided disk
1 double density disk
2 double track density disk

For example, if bit 1 of the path descriptor field PD_DNS is set, indicating
that the drive is double track density, but bit 1 of DD_FMT read from LSN
zero is not set, indicating a single track density disk, then the driver knows
that it must instruct the drive controller to "double step", that is, to move the
head by two steps for each cylinder number (because the drive supports
cylinders twice as closely packed radially as the disk has on it). Similarly,
even though the drive supports double sided floppy disks (PD SID in the
path descriptor is 2), if bit 0 of DD_FMT is not set the driver knows that the
disk is single sided, and so adjusts its calculation of the physical parameters
from the LSN.

12.6.4 Write

The write routine of the device driver is usually very much the complement
of the read routine, the only difference being the direction of data transfer -
the write routine (generally) sends data to the device. Much of the code for
the read and write routines is shared in most device drivers. As in the read
routine, the specific function of the write routine is defined by the file
manager specification. The basic requirements of an SCF device driver and
an RBF device driver are shown below as examples.

281

DEVICE DRIVERS

□ The Sequential Character File Manager (SCF)
Purpose: write one character.
Parameter convention:

Passed: dO.b = character to write
Returns: nothing

SCF drivers usually maintain a circular output buffer in the device static
storage (or dynamically allocated in the initialization routine) filled by the
write routine, and emptied under interrupt. The interrupt service routine for
the "transmitter ready" interrupt takes the character from the circular buffer
and puts it in the chip. The driver write routine waits (by sleeping) if the
buffer is full, and is woken by the interrupt service routine when the buffer
has emptied a little.

Once the buffer has been completely emptied the interrupt service routine
must disable further "transmitter ready" interrupts from the chip. Therefore
the write routine must check whether the "transmitter ready" interrupts are
disabled, and if so it must write the character directly to the chip (rather
than putting it in the buffer), and enable the interrupts. This starts a stream
of interrupts, each one being serviced by putting the next character into the
chip. The stream is only stopped when the buffer becomes empty - the
calling program has no more characters to send, or is supplying them at a
rate below the transmission rate of the chip.

The "data received" interrupt service routine or the read routine may wish to
send a flow control character (XON or XOFF), which must take precedence
over any characters waiting in the output buffer. If "transmitter ready"
interrupts are disabled, the flow control character is put directly in the chip,
and the interrupts are enabled (starting a transmission stream that may be
only one character long). Otherwise a flag is set in the device static storage.
The flag is checked by the "transmitter ready" interrupt service routine at
the next interrupt, and the flow control character is sent instead of taking
the next character from the output buffer.

If the output buffer is full when SCF calls the write routine to send a
character, the write routine must sleep. It is then woken by the interrupt
service routine when space becomes available in the output buffer. Typically
the interrupt service routine will not wake the write routine when just one
space is available, but waits until the buffer has subsided to a low water
mark, typically 10 characters left to send. This reduces the number of
sleep/wakeup cycles, so reducing the processor load. This is described in
detail below in the discussion of interrupts.

282

DEVICE DRIVERS

The use of an output buffer provides a "write behind" mode of operation.
That is, provided there is sufficient space in the output buffer (typically 140
bytes in size), a program making a write request is returned to immediately,
and continues with further operations while the data is transmitted at the
rate permitted by the interface chip. This can be very important in
preventing unacceptable delays - for example, when a real-time process
prints an error or status message. However, under certain circumstances it
may cause problems, as a program may need to know when a packet of data
has completed transmission. In such applications the driver might be
modified to provide an additional Set Status function to send a signal when
the output buffer becomes empty.

The write routine may also be woken from its sleep by a signal from another
process (sent to the process that called the driver), or by a "quit" or
"interrupt" signal sent to the process by the "data received" interrupt service
routine on receipt of one of the special key codes. The write routine must
decide whether to go back to sleep and wait for a character, or to abort the
write with an error. As with the read routine, a typical device driver for
terminals and printers will abort if the signal received was a "deadly" signal.

SCF provides a read-write lockout. That is, even if the read routine goes to
sleep (allowing another process to execute and make system calls), the write
routine will not be called until the read routine has woken up and exited. A
process making a system call that requires a write call to this device will be
"I/O queued" until the read request finishes. The same mechanism applies if
a read request is made while a write request is in progress. This mechanism
is explained in detail in the section on Resource Control in the chapter on
File Managers. It greatly simplifies the job of the device driver - which can
use common device static storage locations for read and write calls - as well
as ensuring that a message cannot appear on a display while a program is
waiting for input (which would lose the waiting program's prompt).

□ The Random Block File Manager (RBF)
Purpose: write one or more consecutive sectors to a disk.
Parameter convention:

Passed: dO.l = number of sectors
d2.1 = starting Logical Sector Number (base 0)
PDBUF(al) = memory to write from

Returns: nothing

This routine is very much the complement of the read routine, and most RBF
device drivers will use the same subroutines for most of both operations. As
with the read routine, the write routine must translate the RBF logical

283

DEVICE DRIVERS

parameters to the appropriate physical parameters for the disk controller,
initialize the controller whenever the format parameters have changed, and
copy the first 22 bytes of the data to the drive table whenever LSN zero is
being written (provided the write operation is successful).

In addition to writing the data, a device driver for a controller that does not
support error detection and correction (EDC) should verify that the write
operation was successful, by reading the sector that has just been written.
Some controllers implement a "verify" command that reads the sector to
check it, but without returning the data to the interface. In the absence of
such a facility the device driver must read the sector to a local buffer in the
device static storage (or dynamically allocated in the initialization routine).
The controller will generate an error condition if the sector was not written
successfully. The device driver can then retry the write operation a few
times, eventually returning a "write" error (E$Write) to RBF if the sector
cannot be written successfully.

For maximum confidence of data integrity the driver can compare the data
read back by the verify operation with the data in the write buffer. This will
reveal any errors in the transfer of data between the interface and the
controller.

If the PD_VFY field of the path descriptor is not zero the driver should not
perform the verify operation. Verifying after each sector is written is very
time consuming, because the controller must wait for the disk to rotate a
complete revolution before reading the sector that was just written.
Therefore some programs - such as the copy and backup utilities - set the
PD VFY field non-zero while writing large blocks of data, to speed up data
transfers.

RBF provides the same read-write lockout as described above for SCF. This
greatly reduces the complexity of the device driver, and is appropriate
because most block-structured devices cannot support concurrent read and
write operations. The lockout is for the whole device. Therefore RBF will not
call the driver to read or write on this or another drive on the same interface
while a previous read or write request is not yet complete.

12.6.5 Get Status and Set Status

These are "wild card" routines. That is, they are a mechanism to permit any
function to be implemented. By convention, the Get Status routine is used to
request information from the device or driver, while the Set Status routine is
used to request device or driver operations.

284

DEVICE DRIVERS

In general the file manager will perform the same device lockout for these
routines as for the read and write routines, so it is permissible for the device
driver to sleep as part of one of these calls. However, SCF does not
implement device lockout in its Get Status routine. Therefore SCF device
drivers must not sleep in a Get Status routine, or else the driver must
implement the device lockout itself. In practice, if the SCF device driver
writer wishes to add extra functionality to get information from the device,
and the function may need to sleep, a Set Status call should be used rather
than a Get Status call, to overcome this problem.

As with all I/O system calls, the Get Status (I$GetStt) and Set Status
(I$SetStt) system calls go first to the kernel. The specific function required
is indicated by a function code parameter to the system call (in the dl.w
register). The kernel checks this code to see if it is known to the kernel. If so,
the kernel executes the desired function. In either case, the kernel then calls
the Get Status (or Set Status) routine of the file manager, passing it the same
function code. If the file manager returns an "unknown request" error
(E$UnkSvc) for a function code that the kernel recognized, the kernel
returns no error to the calling program. Otherwise the kernel returns the
error returned by the file manager. Of course, if the kernel recognizes the
function code, but experiences an error in executing the appropriate
function, it does not call the file manager, but returns the error to the calling
program.

Typically the file manager will behave like the kernel - that is, it checks the
code, executes the appropriate function if it recognized the code, and then
calls the Get Status (or Set Status) routine of the device driver. If the driver
returns an "unknown request" error for a function code that the file manager
recognized, the file manager returns no error to the kernel.

This mechanism whereby the call is passed from the kernel to the file
manager, and from the file manager to the device driver, allows each of the
three modules to implement any number of functions that may be unknown
to the other two. And because even recognized calls are still passed down the
tree, a call that requires action by two modules can be implemented. For
example, the SS Opt Set Status function to alter the options section of the
path descriptor is acted on by the file manager, but because it is also
afterwards passed to the device driver, the driver can use the new
parameters in the options section to reconfigure the interface chip.

The kernel recognizes no Set Status function codes, and only two Get Status
functions: SS Opt (return a copy of the path descriptor options section, 128
bytes), and SS_DevNm (return a copy of the device descriptor module

285

DEVICE DRIVERS

name). These requests are made by the C library functions _gs_opt() and
_gs_devn() respectively.

In addition to calls from a program, the file manager may generate Get
Status or Set Status calls to the device driver. This is an alternative to
defining additional routines in the driver, and has the advantage that the file
manager writer can add more such calls in a later release of the file manager
without the need to change the device driver - the driver will automatically
return an "unknown request" error to the new calls. The kernel does not
generate such calls, although it may do in future releases.

As with other system calls, the parameters are passed from the calling
program in processor registers. However, because any function can be
defined by the kernel, the file manager, or the device driver, the kernel or
file manager cannot simplify the environment of the device driver by passing
the parameters in process registers to the device driver. Instead, the driver
must read the calling program's register stack frame (built by the kernel
when the system call is made), which is pointed to by the PD_RGS field of
the path descriptor. Similarly, to return values to the calling program the
driver must write to the stack frame. For example, to read the calling
program's d2 register (in this case, into the device driver's dO register):

movea.l P0_RGS(al),a5 get stack frame pointer
move.l R$d2(a5),d0 get caller's d2 register

In C an equivalent code fragment would be:
x=pathdesc->pd_rgs->d[2]; /* get caller's d2 register */

The file 'DEFS/process.a' defines the symbolic definitions - such as R$d2 -
for the structure of the stack frame in assembly language, while
'DEFS/MACHINE/reg.h' declares the same for C. If the file manager itself
generates a call that requires parameters, it must save the current parameter
register values from the stack frame, put in the parameters it wishes to pass,
call the device driver routine, and then restore the saved values. This
complication is not needed if the call is one that will not be made from a
program - it is only internally generated by the file manager. In this case the
file manager could pass the parameters in processor registers, as is done for
the read and write routines.

In general, a file manager will recognize at least the SS Opt function of the
Set Status call. This requests the file manager to update the options section
of the path descriptor. The file manager implements this call, rather than the
kernel, because normally the file manager will only permit the calling
program to alter certain fields of the options section. For example, SCF will
allow the program to modify any of the fields of the options section proper,

286

DEVICE DRIVERS

while RBF will only allow modification of fields up to and including the
PDSAS field.

SCF and RBF generate a Set Status call SS Open to the device driver when
a path is opened or created, so a new path descriptor has been created, and a
Set Status call SS_Close when the last image of a path is closed (the path
descriptor is about to be de-allocated). SCF also generates a Set Status call
SS_Relea when process closes a path and the process does not have any
remaining duplications of the path. This is done in case a process requested
the sending of a signal when data was received (SS_SSig Set Status call to
the driver), and then died without being sent the signal, and without having
cancelled the request.

If the cancellation was not forced by SCF, when new data arrived the driver
might send a signal to a new (and unsuspecting) process that was created
with the ID released by the dead process. Note that the device driver writer
must bear this kind of complication in mind when adding Set Status or Get
Status functions to a device driver. A process that has installed a request for
action at some future time may die unexpectedly in the intervening period,
and this should not be catastrophic to the system. An SCF driver can use the
SS_Relea and SS_Close calls from the file manager to ensure that all such
pending requests for a process are cancelled. This requires that the driver
save the process ID and system path number when the request is first made,
so that it can match the pending request with the call from the file manager.

While device drivers will vary in the Get Status and Set Status functions that
they support, a device driver for general use should support at least the
functions that are supported by the standard device drivers supplied by
Microware as example source code, and in the OS-9 implementations that
Microware has carried out. This ensures a common base level environment
that all programs can expect. The list below shows the standard functions for
an SCF and an RBF device driver. The assembly language symbolic name for
the function code is given, together with the C library function provided to
make the call from a C program.

□ Get Status calls for an SCF Driver

Name C function Description
SS_Ready _gs_rdy Returns the number of characters available in the input

buffer to the caller's dl register. If there are no characters
in the input buffer, returns "not ready" error - E$NotRdy

287

DEVICE DRIVERS

Name C function Description
SS_EOF _gs_eof Returns “end of file" error if at end of file. As SCF does not

support a filing structure, there is no static end of file
condition, so this function never returns an error in an SCF
device driver.

The assembly language code below is typical of the Get Status routine of an
SCF driver, and illustrates the use of the calling program's stack frame. Note
that although the calling program passes the function code in the dl.w
register, the file manager moves it to the dO.w register before calling the
device driver. Of course, the function code could also be obtained from the
dl.w register of the calling program's stack frame.

* Getstat
* SCF device driver Get Status "wild card" routine
* Passed:

*

dO.w = function code
(al) = Path Descriptor
(a2) = Device Static Storage

*

* Returns
*

Getstat:

(a4) =
(a6) =

: depends

movea.l
movea. 1
cmp1 .w
bne.s
move.l

beq.s
move.l
bra. s

Process Descriptor
System Globals

on function

PD_RGS(al),a5 get caller's stack frame pointer
V_P0RT(a2),a3 get port (interface chip) address
#SS_Ready,dO check data ready?
GetStatlO ..no
InBufCnt(aZ),d0 get number of characters 1n Input

buffer
NotRdyErr ..none: return "not ready" error
dO,R$dl(a5) return number in caller's dl
GetStatEx ..exit: carry 1s clear

GetStatlO cmpi.w
bne.s

* The carry flag is
* end of file condi

#SS_EOF.dO check for end of file?
UnkSvcErr ..no: unknown request
now clear. Fall through to exit - there 1s never .

tion on a terminal or printer:

GetStatEx rts

* Return
NotRdyErr

"not ready
move.w
or1
rts

" error:
#E$NotRdy,dl
#Carry,ccr

set error code in dl.w register
set carry flag to show error

* Return
UnkSvcErr

"unknown request" error:
move.w #E$UnkSvc,dl
ori #Carry,ccr
rts

set error code 1n dl.w register
set carry flag to show error

288

DEVICE DRIVERS

□ Get Status calls for an RBF Driver

Prior to OS-9 version 2.4 there were no standard Get Status calls for an RBF
device driver. The following calls were added to RBF drivers in OS-9 version
2.4. As described with each call, drivers written prior to OS-9 version 2.4 -
and so returning an "unknown request" error to these calls - will still work
with OS-9 version 2.4, but without the benefit of some of the added features
of OS-9 version 2.4.

Name C function

SS_VarSect (none)

SS_DS1ze (none)

Description
RBF makes this call when opening a path, to determine
whether the driver and device can support sector sizes other
than 256 bytes. If so, the driver should check the value in
PD_SSize. If it is not zero, the driver should verify that it is
a valid sector size, supported by the device and the driver. If
so, the driver returns no error, otherwise the driver returns
an error - typically "parameter error" - E$Param - or
"hardware error" - E$Hardware If PDSSize is zero, the
driver should put the current device sector size in
PD SSize, and return no error. If the driver does not
support sector sizes other than 256 bytes (for example, most
drivers prior to OS-9 version 2.4), the driver returns an
"unknown request" error, in which case RBF assumes a
sector size of 256 bytes, and ignores any value in PD SSize.
If the driver returns an error other than "unknown request"
RBF aborts the opening of the path, otherwise RBF puts the
sector size in PDSctSiz. Note that RBF makes this
request before allocating its sector buffers, so the driver
cannot use the memory pointed to by PD BUF.

Request the disk data capacity in sectors. The format utility
makes this call, to avoid the need to use the path descriptor
options section parameters to calculate the disk data
capacity if the controller can determine the capacity, thus
allowing one form of device descriptor to be used for a range
of disk drives. If the disk controller can determine the disk
data capacity (that is, the disk space usable by the filing
system, excluding sectors reserved by the controller or disk
drive), the driver should issue a command to the controller
to determine the disk capacity, and return it in the calling
program's d2.1 register (in the register stack frame).
Otherwise the driver should return an "unknown request"
error, in which case the format utility calculates the disk
capacity from the number of cylinders, tracks per cylinder,
and sectors per track specified in the path descriptor options
section.

289

DEVICE DRIVERS

□ Set Status calls for an SCF Driver

Name C function Description
SS_Opt _ss_opt Modify the path descriptor options section. The device driver

must check whether the parameters it uses to configure the
device (such as PD PAR and PD_BAU) have changed. If
so, the driver must reconfigure the device. If there is no
change, the driver should not reconfigure the device, as
altering the configuration registers of an interface chip may
corrupt characters currently being transmitted or received.

SS_SS1g _ss_ssig Request that the driver send a signal to the process when
data becomes available. The calling program passes the
desired signal code in the d2.w register. The device driver
must save not only the signal code, but also the caller's
process ID, and the system path number (from the path
descriptor field PD_PD), in order to know which process to
send the signal to, and to provide a check for a subsequent
SS_Relea call. Once the signal has been sent (usually by
the interrupt service routine, when a character is received),
the driver "forgets" the call. A new SS SSig call must be
made by the program if it wishes to receive another signal.
If data is already available in the input buffer the driver
must send the signal immediately. The driver must mask
interrupts up to the interrupt level of the device while
checking for input data (and perhaps sending a signal), to
avoid a race condition with an incoming character invoking
the interrupt service routine.
Normally the device driver will permit only one such request
to be pending at any one time. That is, if a process has made
this request but has not yet be sent a signal (and has not
cancelled the request with SSRelea), then a "not ready"
error - E$NotRdy - is returned to any other SSSSig
request. Also, typically the driver will return a "not ready"
error to any call to the read routine while an SS SSig
request is pending.

SSJJCOn _ss_dcon Request that the driver send a signal when the DCD (Data
Carrier Detect) handshake input becomes asserted. This
request (and the SS DCOff, SS EnRTS, and SS DsRTS
requests) is only appropriate for a serial port device with
modem handshake lines (typically available on all
asynchronous serial ports, such as RS232C). This request is
similar to the SS SSig request, except that the read routine
does not return a "not ready" error if an SS DCOn request
is pending. This function can only be supported if the device
can generate an interrupt when DCD becomes asserted
(otherwise the driver must return an "unknown request"
error - E$UnkSvc).

SS_DCOff _ss_dcoff Request that the driver send a signal when the DCD (Data

290

DEVICE DRIVERS

Name C function Description
Carrier Detect) handshake input becomes negated. This is
similar to the SS DCOn request. This function can only be
supported if the device can generate an interrupt when DCD
becomes negated (otherwise the driver must return an
"unknown request" error - ESUnkSvc).

SS_Relea _ss_rel Cancels any outstanding SS SSig, SS_DCOn, and
SS DCOff requests for this process on this path.

SS.EnRTS _ss_enrts Requests that the driver assert the RTS handshake output
of the device. The circuit configuration or the interface chip
behaviour may make it more appropriate to assert the DTR
handshake output signal instead - the device driver
documentation should make it clear which signal is
manipulated by this function. If no output signal can be
manipulated manually by the device driver it should return
an "unknown request" error.

SS_DsRTS _ss_dsrts This is the complement of the SS_EnRTS request. It
requests that the device driver negate the RTS (or DTR)
handshake output of the device.

□ Set Status calls for an RBF Driver

Name C function Description

SS_Reset _ss_rest

SS_WTrk _ss_wtrk

Restore the drive head to cylinder zero. Floppy disk drives
usually have a "head at cylinder zero" sensor. The only way
in which the controller can know which cylinder the drive
head is on is by knowing how many steps the head has
taken from cylinder zero. After many steps backwards and
forwards a slight positional error may accrue, due to the
mechanical characteristics of the drive. The driver will
therefore usually automatically use a special controller
command to restore the head to cylinder zero when reading
or writing a sector on cylinder zero, or after a read or write
operation gives a "seek error" (in order to reconfirm that the
head is on the correct cylinder). During a format operation,
however, the controller cannot give a seek error, as it is not
reading sector address information from the unformatted
disk. Therefore the format utility makes this request after
formatting a number of cylinders, to ensure the head
alignment is correct (the driver will move the drive head to
the correct cylinder on the next "format a track" request).
Request to format a track of a disk. The calling program
(usually the format utility) specifies a surface of a cylinder
to format (see below).

291

DEVICE DRIVERS

The SS_WTrk request is used by the format utility, which issues a request
to format each surface of each cylinder. The cylinder number (base zero) is
specified in the caller's d2.w register. The surface number (base zero) is
specified in bits 8:15 of the caller's d3.w register. Many controllers (such as
SCSI controllers) have a command to format the whole disk. A driver for
such a controller only reacts to a SS_WTrk request for track zero (both
cylinder and surface are zero), in response to which the driver issues the
controller command to format all of the disk. Such a driver takes no action
and returns no error for requests on other cylinders or surfaces.

Many floppy disk control circuits use Western Digital controller chips, such
as the 177x series, and the 279x series. These controllers require the
computer to provide a complete byte stream to format the track. Because
these controllers are in common use, and generating such a "track buffer"
requires a great deal of detailed knowledge and programming effort,
Microware has included the generation of a Western Digital track buffer in
the format utility. The buffer is pointed to by the caller's aO register, and
can be transferred directly to the controller chip in the same way as read or
write data.

A driver for a different type of controller may need to build a track buffer or
sector address list. This requires the use of the "physical sector interleave
factor” to determine the order in which the sectors are to be numbered on
the track. (This allows the optimization of reading or writing logically
consecutive sectors). Because this is also a common requirement, the format
utility builds a sector number list, otherwise known as an interleave table.
The list is pointed to by the caller's al register, and is the same for every
track. It consists of an array of bytes, one for each sector number, in the
order in which the sector numbers are to be used on the track. The sector
numbers are base zero. Therefore the driver should add the offset in
PD SOffs to each sector number when building the track buffer or sector
address list.

The third group of controllers comprises those (such as SCSI controllers)
that require only a high level command to format a track or the whole disk.
Such a controller may allow the driver to specify the physical sector
interleave factor. The interleave factor is given in the PD_ILV field of the
path descriptor options section. However, this field cannot be modified by the
SS Opt Set Status call. Therefore, in order to allow the user to specify the
interleave factor using the *—i’ option, the format utility passes the
interleave factor in the d4.b register (using the value in PD_ILV if the i’
option is not used). Therefore the driver should use the value in the caller's
d4.b register, rather than the value in PD ILV.

292

DEVICE DRIVERS

In order that the user can format a single track density disk in a double track
density drive, the format utility also passes a field of format flags in the
d3.b register. This field has the same structure as the DD FMT field of LSN
zero and the drive table, but applies separately for each track. For example,
bit 0 is zero when formatting surface (side) zero, and one when formatting
surface one (or other surfaces), rather than indicating whether the disk is
single or double sided. To support disks with more than two surfaces, bits
8:15 of the d3.w register specify the surface number (base zero).

Some drivers (particularly those for "intelligent" controllers, such as SCSI
controllers) also implement the SS_DCmd Set Status request, allowing the
calling program to pass any command directly to the controller. There is no
set parameter format for this request, and the calling program must know
both the request parameter format and the controller command and
response structure.

12.7 INTERRUPTS
This section discusses the purpose of interrupts, and how they are used
under the OS-9 operating system. Although OS-9 makes no requirement
that a device driver must use interrupts, they are essential to the proper
operation of any multi-tasking or real time operating system. Interrupts are
used for two distinct purposes:

a) To signal the occurrence of hardware events for which there
may be no process waiting. Examples are clock ticks, and
serial port type-ahead and write-behind. I have named this
an unsolicited interrupt, because the interrupt occurs
without being specifically requested.

b) To wake up a sleeping process that is waiting for the
completion of a hardware operation, so allowing the processor
to execute other processes. Examples are disk and tape
operations. I have named this a solicited interrupt, because
the interrupt cannot occur unless a process has requested the
interrupt and is waiting for it.

Of course, unsolicited interrupts can only occur if the device driver (or other
software) has enabled interrupt generation in the interface chip.
Nonetheless, the distinction between solicited and unsolicited interrupts is
an important one, with significant implications for the device driver writer.

293

DEVICE DRIVERS

Interrupts are a function of external hardware, and are therefore totally
asynchronous to the normal program flow of control. It is most likely that the
process waiting for the interrupt (if there is one!) is not executing at the time
of the interrupt. It will be asleep, and another process will be executing. It is
this asynchronicity that gives rise to all of the conceptual and programming
problems of interrupts. Once this concept has been mastered the
programming precautions necessary to use interrupts are obvious and simple.

An interrupt is handled by an interrupt service routine. Interrupt service
routines are normally in device drivers, because it is the device drivers that
handle the hardware that causes the interrupts. However, this is not a fixed
requirement of OS-9. Any software operating in system state can install an
interrupt service routine (using the F$IRQ system call) - for example, a
kernel customization module or a system state trap handler. The interrupt
service routine itself can be located anywhere in memory, although it is
normally located within the module that installed it. Otherwise there may be
a risk that the module containing the interrupt service routine is unlinked
before the corresponding interrupts are disabled.

The 68000 family of microprocessors supports 199 separate interrupt vectors
- 7 autovectors (25 to 31) and 192 normal vectors (64 to 255). An OS-9
interrupt service routine services one such vector (although multiple
interrupt service routines can be installed on the same vector). Because OS-9
is completely customizable, interrupt service routines can be dynamically
installed and removed, using the F$IRQ system call. At coldstart the kernel
sets all of the exception jump table entries for interrupts to point to the
kernel's interrupt handler function, and builds a table in the System Globals
of 199 pointers, all initially null.

When the F$IRQ system call is made to install an interrupt service routine,
the kernel finds a free entry in the array of structures known as the
interrupt polling table. It adds the entry to the linked list pointed to by the
root pointer for the vector on which the interrupt service routine is being
installed. Thus the interrupt polling table contains up to 199 separate linked
lists, intertwined together. Within each linked list the order of the entries is
determined by the "polling priority" value passed to the F$IRQ call - a low
priority value puts the entry nearer the root of the list. If two entries have
the same priority value the chronologically later entry is placed after the
earlier entry. A priority value of zero is a special case - the kernel ensures
that this is the only entry on the specified vector. If the linked list ("queue")
for this vector is not empty when the request with priority zero is made, the
caller is returned a "vector busy" error (E$VctBsy). The same error is

294

DEVICE DRIVERS

returned if an F$IRQ call is made for a vector on which there is already an
entry installed with a priority of zero.

The interrupt polling table entry contains the address of the interrupt
service routine, the static storage pointer passed to the F$IRQ call (usually
the address of the device static storage), and the "port address" passed to the
F$IRQ call. When the processor initiates interrupt exception processing it
jumps to the exception jump table entry for the interrupting vector, which
jumps to the kernel's interrupt handler. The kernel uses the vector number
to select the appropriate root pointer. It then calls the interrupt service
routine from the first entry in the queue (lowest priority value). If that
routine returns the processor carry flag set, the kernel calls the routine from
the next entry, and so on until a routine returns the carry flag clear (or the
queue is exhausted - see below).

This technique allows all 199 vectors to be supported without wasting
memory. Multiple devices can use the same vector. However, this is normally
only necessary for autovectored devices (the vector is determined by the
interrupt level), as there are only 7 autovectors. The F$IRQ system call is
also used to remove an entry from the interrupt polling table, permitting
complete termination of the resources of a device.

The installed interrupt service routine is called by the kernel with the a2
register containing the same static storage pointer (and the a3 register
containing the same "port address") as was passed to the F$IRQ system call.
The static storage pointer will normally be the address of the device static
storage for the interrupting device, allowing the device driver and interrupt
service routine to have common access to shared variables. As the interrupt
service routine is normally part of the device driver module, the interrupt
service routine will use the same symbolic names for the variables as the
main body of the device driver. The "port address" in the a3 register is not
used at all by the kernel - it is passed merely as a convenience to the
interrupt service routine (which could otherwise have read it from the device
static storage).

The interrupt service routine is only permitted to destroy the dO, dl, aO, a2,
a3, and a6 registers (unless bit 0 of the first compatibility byte in the init
module is set). An interrupt service routine will not normally modify the
processor interrupt mask in the status register, except perhaps to
temporarily set the mask to level 7 to mask interrupts from other devices
when executing code fragments that interact with other interrupting devices.

295

DEVICE DRIVERS

The interrupt mask should never be lowered below the interrupt level of the
interrupting device, as this could lead to nested interrupts, eventually
crashing the system. If the interrupt service routine cannot handle one
interrupt from the device before it generates another interrupt, it will not
help to expose the system to the second interrupt before the first has been
handled! When the interrupt service routine finishes, it returns to the kernel
with the rts instruction just like any other subroutine, not the rte
instruction. In summary, the calling convention for an interrupt service
routine is:

Passed: (a2) = static storage (usually device static storage)
a3.1 = port address
(a6) = System Globals

Returns: carry set if not this driver's interrupt
May destroy: d0-dl/a0/a2~a3/a6

While the kernel's interrupt handler does not make any use of the static
storage pointed to by the interrupt polling table entry, the static storage
pointer value is used to identify an entry in the linked list for a vector when
the F$IRQ call is used to remove an entry from the polling table. The kernel
determines that the call is being used to remove an entry because the
interrupt service routine address (in the aO register) is zero. It then scans the
linked list for the given vector, looking for a match for the given static
storage pointer (in the a2 register). This implies that two entries on the same
vector must not be installed with the same static storage pointer. This is not
a problem - different device drivers (even different incarnations of the same
device driver module) will have different device static storage addresses, and
a driver will not need to install two interrupt service routines on the same
vector.

An interrupt service routine cannot make use of most of the system calls.
This is because the interrupt may occur while a process is making the same
system call (or a related one), and a "nested" call might damage operating
system memory structures. The following system calls are available for use
by interrupt service routines (the kernel masks interrupts during critical
code fragments in these system calls):

F$Event

F$Send
F$AProc

F$NProc

All event functions except Ev$Creat, Ev$Delet,
Ev$Link, and Ev$Info.

Send a signal.

Put a process into the active queue.

Make the next process in the active queue the

296

DEVICE DRIVERS

F$Move

F$CCtl
F$Time

F$Julian

F$Gregor

current process.

Copy a block of memory.

Flush, enable, or disable the processor caches.

Get the current date and time.

Convert Gregorian date and time to Julian.

Convert Julian date and time to Gregorian.

Because of the asynchronous nature of OS-9 signals - able to cause the
asynchronous execution of a signal intercept handler function - there is
often conceptual confusion between interrupts and signals. The confusion is
sometimes increased because most interrupt service routines send signals.
Interrupts are a function of external hardware and the interrupt circuitry of
the processor. Interrupts are masked using the interrupt mask field of the
processor's status register. By contrast, signals are a software function only,
and are masked by the F$SigMask system call. If an interrupt service
routine sends a signal, the receiving process's signal intercept handler is not
called until the process next runs in user state, which cannot occur at least
until the interrupt service routine has completed. The signal intercept
handler is not called during the execution of the interrupt service routine,
and interrupts are not masked when a signal intercept handler is called.

While the job to be done by an interrupt service routine varies widely, some
basic principles apply. The interrupt service routine must first ascertain that
its device caused the interrupt, usually by reading a status register from the
interface chip. If not, it simply returns to the kernel with the processor's
carry flag set. If the interrupt service routine was installed in the polling
table with a priority of zero then it does not need to check that its device
caused the interrupt, as it is the only device using this vector number. This is
an essential mechanism for some interfaces that have no status flag showing
that they have an interrupt pending.

Once the interrupt service routine has verified that its device generated the
interrupt, it must:

a) Clear the interrupt to the processor. Many normal vectoring
devices clear the interrupt automatically once they have sent
the interrupt vector to the processor (interrupt acknowledge
cycle).

b) Carry out any immediately required operations. These must
be kept to a minimum - processes cannot run while an

297

DEVICE DRIVERS

interrupt is being serviced, and other interrupts on the same
and lower interrupt levels cannot be serviced. In general, if at
all possible operations should be left to be carried out by the
device driver main body once it has been woken - which may
incur a delay of tens of milliseconds.

c) Wake up any waiting process. This refers to the main body of
the device driver having executed a "sleep" request (F$Sleep)
on behalf of the calling process, waiting for the interrupt to
occur. For a solicited interrupt there will always be a waiting
process. For an unsolicited interrupt there may be a waiting
process, but not always.

The handling of interrupts, as with most of the code in device drivers, is very
much to do with understanding and managing the hardware. However, a
discussion of the control of hardware interface devices is outside the scope of
this book. From an operating system point of view the important element is
the interaction with any waiting process. It is with this aspect that the
following discussion is concerned.

12.7.1 Solicited Interrupts

A solicited interrupt should be used wherever the device driver estimates
that a hardware operation will take longer than the time that would be
required for the driver to go to sleep and be woken by an interrupt service
routine. That is, more processor time will be used by polling the interface
status register until the operation is complete than by waiting for an
interrupt.

Solicited interrupts are relatively easy to handle. The device driver decides
that a hardware operation is going to take some time, and rather than wait
by polling a status register it elects to give up its usage of processor time and
wait for an interrupt. As the interrupt cannot occur until the driver has
performed the device function that initiates the interrupt mechanism,
control is straightforward:

1) Set a flag in the static storage indicating to the interrupt
service routine that a process needs waking, together with the
ID of the process to wake (the current process). It is usually
convenient to combine the two items, because no process has
a process ID of zero. Therefore if the static storage field
containing the ID of the process to wake is zero, no process is

298

DEVICE DRIVERS

waiting to be woken.

2) Initiate the device operation, with the interface chip set to
generate an interrupt when the operation is complete.

3) Go to sleep. The F$Sleep system call will return when the
process is woken by a signal, or - for a timed sleep - when
the sleep time expires. A timed sleep is only used if the driver
wishes to implement a timeout on the hardware operation.

It is very important not to reverse operations 1 and 2. The interrupt may
come in at any time after the device operation has been initiated, and the
interrupt service routine must know that it has a process to wake. It does not
matter if the interrupt occurs between stages 2 and 3 (that is, before the
driver has executed the "sleep" request). The kernel leaves the signal sent by
the interrupt service routine pending in the process descriptor. The F$Sleep
system call sees that a signal has been received and immediately returns to
the driver without putting the process to sleep.

Once the driver has been woken it must verify that the interrupt service
routine sent the signal - the signal may have come from another process
communicating with the process that called the device driver. If the
hardware operation is not complete the driver must go back to sleep (unless
it decides that the received signal was "deadly"). Because the driver is
executing in system state, all the signals sent to the process are queued in the
process descriptor until the process returns to user state (at the end of the
system call that called the driver). Therefore no signals are lost. The
"wakeup" signal - S$Wake - is an exception. It is not queued, and is
therefore only suitable for use by an interrupt service routine waking up a
device driver.

The driver is woken by each signal received. The kernel sets a flag in the
process descriptor to show that the latest signal caused a wakeup, so that
when the driver goes back to sleep (because the signal was not from the
interrupt service routine), the F$Sleep system call permits the sleep - it
does not return immediately to the driver, even though a signal is pending
for the process.

Because this mechanism is so commonly used, Microware have defined two
fields in the kernel part of the device static storage to support it: V_BUSY
and V_WAKE. These fields are not used at all by the kernel. The field
V_BUSY contains the ID of the calling process, set by the file manager as
part of its interlock on the device (see the section on Resource Control in the
chapter on File Managers). The field V_WAKE is the flag field described

299

DEVICE DRIVERS

above. The driver copies the process ID to this field, setting it non-zero as an
indication to the interrupt service routine that a process needs waking. The
interrupt service routine clears the field (after taking the process ID) as a
handshake to the main body of the driver, and to prevent further wakeups.
For example:

move.w
bsr

V_BUSY(a2).V_WAKE(a2)
IssCmd

set flag and process ID
Initiate device operation

Loop moveq #0.d0 Indicate Indefinite sleep
os9 FJSleep sleep until woken
tst.w V_WAKE(a2) woken by Interrupt?
bne.s Loop ..no; go back to sleep

In this example the driver does not consider any signal is "deadly" - that is, a
signal important enough to abort the operation. Therefore if on wakeup it
finds that it has not been woken by the interrupt service routine, it goes back
to sleep without checking the signal that caused the wakeup.

Note the use of the V_BUSY field as the source of the process ID. Most file
managers put the current process ID in this device static storage field.
However, the kernel does not set this field, and so it is not valid during the
initialization and termination routines. A driver that needs to use interrupts
within the initialization or termination routines must take the process ID
from the process descriptor:

move.w P$ID(a4),V_WAKE(a2) set flag and process ID

If a common "sleeping" subroutine is used that assumes V_BUSY contains
the process ID, then the initialization and termination routines could copy
the process ID to the field. However, the initialization routine must be sure
to clear this field before exiting, as the file manager will expect it to be clear
in subsequent I/O calls (see the chapter on File Managers). Note that it is in
any case inadvisable to sleep within the initialization routine (see the
preceding section on the Initialize routine).

The corresponding interrupt service routine would be as shown below,
assuming the routine has already determined that this is its interrupt, and
taken any necessary action to clear it:

IRQExit

move.w
beq.s
cl r.w
moveq
os9
moveq
rts

V_WAKE(a2) ,d0
IRQExit
V_WAKE(a2)
#S$Wake,dl
FJSend
#0.dl

get ID of process to wake
..none; (should not happen)
show valid interrupt wakeup
send special wakeup signal
send the signal
clear carry - Interrupt serviced
return to kernel

300

DEVICE DRIVERS

Note the use of the signal code S$Wake. As already described, the kernel
assigns special properties to this signal code, so that its only function is to
ensure that a process is in the active queue.

12.7.2 Unsolicited Interrupts

Unsolicited interrupts - such as from serial port received data - are slightly
more complex to handle. The device may generate an interrupt at any time,
so it is important to prevent timing race conditions between the interrupt
service routine and the main body of the device driver. This is done by
preventing the recognition of the interrupt by the processor during critical
code fragments in the main body of the driver. To do this, interrupts are
masked in the status register up to the interrupt level of the device.

The interrupt level of the device is specified in the M$IRQLvl field of the
device descriptor. The initialization routine of the driver can build a status
register image with the interrupt mask set to that level, and save it in the
device static storage for later use:

move.b MJIRQLvl(al),d0 get device Interrupt level
Isl.w #8.d0 shift to bits 8:10
bset #SupvrB1t+8.dO set supervisor state bit
move.w dO.IRQMask(a2) save sr Image

The following example is typical of a serial port device driver read routine.
For simplicity this example ignores the need to send the XON flow control
character if XOFF had been sent and the buffer is now at the low water
mark:

Read tst.w S1gPrc(a2) SS_SS1g request pending?
bne NotRdyErr ..yes; read request not allowed
move sr,-(a7) save current Interrupt mask
move IRQMask(a2),sr mask Interrupts to device level
bsr InBufOut get character from Input buffer
bcc.s Read20 ..got one (1n dO.b)

* The Input buffer was empty. Sleep. waiting for data:
move.w V_BUSY(a2),V_WAKE(a2) set flag and process ID
move (a7)+,sr unmask Interrupts
bsr Sleep sleep
bcs.s ReadEx ..fatal signal received; abort
bra .s Read ..else try again

Read20 move.b V_ERR(a2),dl get error flag
cl r.b V_ERR(a2) reset 1t
move (a7)+.sr unmask Interrupts
tst.b dl any errors?
beq.s ReadEx ..no; carry 1s clear
move.w #E$Read,dl return read error
or1 #Carry,ccr set carry to show error

301

DEVICE DRIVERS

ReadEx rts

* Read request made while SS_SS1g request 1s pending:
NotRdyErr move.w #E$NotRdy,dl return "not ready" error

or1 #Carry,ccr
rts

The InBufOut subroutine gets a character from the input circular buffer,
returning it in the dO.b register. If the input buffer is empty, the subroutine
returns the processor carry flag set.

The Sleep subroutine sleeps indefinitely until woken by a signal, and then
checks whether a deadly signal has been received by the process, or the
process has been condemned (sent a "kill" signal). If so, the driver exits
immediately with the signal code as the error code (or 1 if the process is
condemned), not waiting to complete the I/O operation. (This would not be
suitable in an RBF driver, where the operation must be completed or the disk
filing system may be corrupted.)

Note that prior to OS-9 version 2.4 the P$Signal field of the process
descriptor contained the oldest pending signal (the next signal to be
processed). Therefore if a non-deadly signal was received followed by a
deadly signal the check in the driver would only see the non-deadly signal,
and not abort. From OS-9 version 2.4 onwards the P$Signal field contains
the most recently received signal (not yet processed by the user program), so
by checking this field the driver will see each signal in turn. Also, prior to
OS-9 version 2.4 only the abort (quit) and interrupt signals (2 and 3) were
considered deadly. From OS-9 version 2.4 onwards all signal codes below 32
are considered deadly.

Sleep moveq #0.(10 sleep without timeout
os9
move.w

FtSleep
P$S1gnal(a4),dl get most recent signal 1n dl.w

beq.s SIeeplO ..none
cmp1,w #S$Deadly.dl deadly signal?
bcs.s SleepEr ..yes; error

SleeplO moveq #0.d0 ensure carry 1s clear
btst #Condemn,P$State(a4) 1s process dead?
beq.s SleepEx ..no; exit with carry clear
moveq #l.dl "unconditional abort’ error

SleepEr or1 #Carry,ccr set carry to show error
SleepEx rts

The corresponding code fragment in the interrupt service routine to wake up
the waiting driver is the same as for a solicited interrupt. However, while for
a solicited interrupt device driver it would be an error for an interrupt to
occur without there being a process to wake up, in the case of unsolicited
interrupts this is a common occurrence.

302

DEVICE DRIVERS

The important point to note in the above read routine example is that the
processor interrupt mask was set to the interrupt level of the device while
the check on the input buffer was made, and interrupts were not unmasked
until a character had been taken from the buffer or the wakeup handshake
flag V_WAKE had been set. Remember also that the processor automatically
sets its interrupt mask to the interrupt level of the device during an
interrupt service routine. The result is that these two code fragments are
mutually exclusive - neither can asynchronously break into the other -
permitting an "indivisible" set of operations. This does not preclude a higher
level interrupt from another device being serviced while either routine is
executing, but as that interrupt service routine is not communicating with
this driver the possibility is not relevant. (If the device driver does also
service a higher level interrupt, critical code fragments should mask
interrupts to the higher level).

Note that once the V_WAKE flag is set the driver can unmask interrupts
(indeed, it must unmask interrupts before making the F$Sleep system call).
If an interrupt comes in after V_WAKE is set but before the driver has gone
to sleep, the interrupt service routine will still send the signal. Because the
process is the current process (it is not yet in the sleeping queue), the kernel
will set the B_WAKEUP bit of the P$SigFlg field of the process descriptor,
and the subsquent F$Sleep system call will return to the driver without
sleeping.

Similarly, because the interrupt service routine clears the V_WAKE field
when sending the signal, on wakeup the device driver will find this field clear
if it has been sent the signal (although in this example the driver does not
use this flag, but instead checks the input buffer again). Provided the device
driver writer takes care to provide such an indivisible handshake between
the main body of the driver and the interrupt service routine, there is no
possibility of a timing race condition, and no interrupts will be missed.

The write routine for a serial port device driver is almost identical to the
read routine, except that the write routine must sleep if the output buffer is
full when it tries to put a character into the buffer. Also, the write routine
has the responsibility for starting the "transmit stream" if transmitter
interrupts had been disabled because the output buffer was empty.

When the interface chip generates a "transmitter ready" interrupt, the
interrupt service routine checks the output buffer. If the buffer is not empty
the interrupt service routine takes the next character from the buffer and
writes it to the transmit register of the chip. The chip will generate another
interrupt when its transmit register becomes empty again. Thus a continuous

303

DEVICE DRIVERS

stream of interrupts and character transmissions is maintained so long as the
output buffer is not empty, which will be the case so long as the program
(and SCF and the driver) provides data faster than the data transmission
rate of the interface. If the buffer is empty, the interrupt service routine
must command the chip to disable further "transmitter ready" interrupts,
and set a "transmitter interrupts disabled" flag in the device static storage.
Note that at this time the chip has room for at least one character in its
transmitter register.

Before attempting to put the character in the output buffer (but after
masking interrupts), the write routine checks whether the buffer is empty
and transmitter interrupts are disabled (transmitter interrupts could be
disabled because the "data received" interrupt service routine received the
XOFF flow control character). If so, it knows the transmit stream has been
broken, and must be restarted. It does this by writing the character directly
to the transmit register of the chip (rather than to the output buffer in the
device static storage), and enabling transmitter interrupts from the chip. It
then clears the "transmitter interrupts disabled" flag.

Whether the write routine writes the character to the transmit register and
then enables transmitter interrupts in the chip, or vice versa, depends on the
behaviour of the transmitter interrupts of the chip. It is more widely
applicable to enable the interrupts first, and then write the character. This
will work if the chip generates an interrupt so long as the transmit register is
empty (the interrupt will be generated, but then cleared when the character
is written - meanwhile, the write routine has interrupts masked in the
processor). It will also work if the chip generates an interrupt when the
transmit becomes empty, provided the transmitter interrupts are enabled at
that time. Enabling the interrupts before writing the character avoids a
potential race condition.

12.7.3 Choosing Interrupt Levels

There has frequently been a much confusion over the philosophy which
should be used to decide what interrupt level to assign to each device.
However, a little thought will show that the decision can be made very easily.
The only benefit of assigning a higher level of interrupt to one device than to
another is that interrupts from the first device will pre-empt the service of
interrupts for the second, and be accepted by the processor when the device
driver for the second device has interrupts masked to the level of its device.

As all interrupts must eventually be handled by the processor, the important
concern is that the interrupt from a device must be handled before the device

304

DEVICE DRIVERS

wishes to generate another interrupt of the same type. For example, if a
serial port chip generates a "data received" interrupt, it must be serviced -
and the character read from the chip - before the chip receives another
character, assuming the chip has only a single level of buffer for received
characters in addition to its receive shift register. However, if the chip has an
8 byte FIFO for received characters, it does not matter if the interrupt is not
serviced before another character is received, provided it is serviced before 8
characters are received.

One important point is apparent here - solicited interrupts almost never
need to be on a high level interrupt. Such interrupts are only generated in
response to a command from the driver to the chip. If the driver takes a long
time responding to the interrupt, no problem is caused, because the chip
cannot need to generate another interrupt until the driver issues another
command. Therefore chips that only generate solicited interrupts can be on a
low interrupt level - 1 or 2, for example. A high interrupt level is only
needed if a remote device needs a rapid response. For example, a
communications protocol may specify a maximum response time.

This only leaves the question of how to select the interrupt levels for devices
that generate unsolicited interrupts, such as communications ports, the clock
tick hardware, and some network interfaces. Again, the answer is simple.
The highest level of interrupt should be assigned to the device that can
produce the shortest interval from one interrupt to the next. For example, a
serial port operating at 19200 baud will generate interrupts roughly eveiy
50Qus, whereas a typical clock tick is 10ms. It follows that unless the serial
port has a 20 character FIFO (unlikely!), it should have a higher level
interrupt than the tick hardware. That is to say, it is less important that the
response to a tick interrupt be delayed by a few microseconds, than that the
serial port interrupt response be delayed by a similar time.

The only modifying consideration is the seriousness of the loss of an
interrupt from a particular device. For example, a lost serial port interrupt
will cause a communications error - hopefully recoverable - while a lost tick
interrupt will cause an unrecoverable date and time error. However, a system
that is so heavily loaded with interrupts is probably on the edge of failing in
the application in any case.

12.8 A SKELETON DEVICE DRIVER

Often, part of the problem in writing a device driver for OS-9 is in knowing
how to start. To help overcome this difficulty, this section shows the skeleton

305

DEVICE DRIVERS

of a device driver in assembly language. It provides the bones on which a
device driver that actually controls a hardware interface can be built. Note
the use of the file 7dd/DEFS/oskdefs.d'. This file contains definitions - such
as module types - that cannot conveniently be taken from a library, due to
limitations in the linker on the use of external symbols in arithmetic
expressions.

* Skeleton device driver
Typ_Lang
Att_Revs

Edition

set (Dr1vr<<8)+0bjct module type and language
set ((ReEnt+SupStat)<<8)+0 module attributes and

revision
set 1 software edition number
psect skeldrv,Typ_Lang,Att_Revs.Ed111on,0.EntryTabl e
use /dd/DEFS/oskdefs.d

* Static storage definitions (to form the last part of the Device
* Static storage):

sr Image with Interrupts masked
end of static storage definitions

IRQMask
vsect
ds .w
ends

1

* Routine: offset table:
EntryTabl e dc.w Init Initialize

dc.w Read read
dc.w Write write
dc.w GetStat get status
dc.w SetStat set status
dc.w Term termlnate
dc.w 0 (exception handler)

* Initialize
* Passed: (al) = Device Descriptor
* (a2) = Device Static Storage
* (a4) = Process Descriptor of current process
* (a6) = System Globals
* Returns: carry set If error, with error code in dl.w
* May destroy: d0-d7/a0-a6,ccr
Init tst.w dO clear carry - no error

rts

* Terminate
* Passed: (al) = Device Descriptor
* (a2) = Device Static Storage
* (a4) = Process Descriptor of current process
* (a6) = System Globals
* Returns: carry set 1f error, with error code in dl.w
* (kernel Ignores any returned error)
* May destroy: dO-d7/aO-a5,ccr (NOT a6)
Term tst.w dO clear carry - no error

rts

306

DEVICE DRIVERS

* Returns: carry set 1f error, with error code 1n dl.w

* Read
* Passed: (al) = Path Descriptor - (NOT SBF)
* (a2) = Device Static Storage
* (a4) = Process Descriptor of current process
* (a6) = System Globals
* RBF only: dO.l = number of sectors to read
* RBF only: d2.1 - LSN of first sector to read
* SBF only: dO.l = number of bytes to read
* SBF only: (aO) ■= buffer to read to
* SBF only: (a3) = drive table

* SCF only: dO.b = character read
* SBF only: dl.l = number of bytes read
* May destroy: d0-d7/a0-a6,ccr
Read tst. w dO clear carry - no error

rts

* Write
* Passed: (al) - Path Descriptor - (NOT SBF)
* (aZ) = Device Static Storage
* (a4) = Process Descriptor of current process
* (a6) = System Globals
★ RBF only: dO.l - number of sectors to write
* RBF only: dZ.l = LSN of first sector to write
★ SCF only: dO.b - character to write
* SBF only: dO.l - number of bytes to write
* SBF only: (aO) = buffer to write from
* SBF only: (a3) - drive table
* Returns: carry set if error, with error code 1n dl.w
* SBF only: dl.l - number of bytes written
* May destroy: d0-d7/a0-a6,ccr
Write tst. w dO clear carry - no error

rts

* Get status
* Passed:
*

(al) = Path Descriptor
(aZ) = Device Static Storage
(a4) - Process Descriptor of current process
(a6) - System Globals

★ dO.w = function code
* Returns: carry set If error, with error code 1n dl.w

May destroy: d0-d7/a0-a6,ccr
Getstat move.w #E$UnkSvc,dl unknown code

or1 #Carry.ccr return error
rts

307

DEVICE DRIVERS

* Set status
* Passed: (al) - Path Descriptor
* (a2) - Device Static Storage
* (a4) - Process Descriptor of current process
* (a6) = System Globals
* dO.w = function code
* Returns: carry set 1f error, with error code 1n dl.w
* May destroy: d0-d7/a0-a6,ccr
SetStat move.w #E$UnkSvc,dl unknown code

ori #Carry,ccr return error
rts

ends end of code

12.9 CLOCK DRIVERS
Each OS-9 system must have "clock" hardware and a clock driver, to support
time-sliced multi-tasking, timed sleeps, alarms, and the maintenance of the
date and time. As a minimum, the clock hardware must have a periodic
timer, generating interrupts at regular intervals. This is the system "tick"
interval, usually 10ms. The interval between ticks must be precisely
constant, as the ticks are used to maintain the system date and time. This
implies that the timer must be cyclic - there must be no need for software to
retrigger the timer. Also, the tick period must be such that there are an
integral number of ticks per second.

The clock hardware may also include a battery-backed "time of day" circuit.
This is typically a separate chip, maintaining the date and time even when
the computer is switched off.

It is the job of the clock driver to control this hardware, and to call the
kernel's tick handler when a tick interrupt occurs. The clock driver is
different from the OS-9 I/O device drivers. There is no associated device
descriptor, path descriptor, device static storage, or file manager, and there
can only be one clock driver in each system. The clock driver does not have a
routine offset table such as device drivers have. Instead, the execution entry
offset in the module header (the M$Exec field) points directly to the
initialization routine of the clock driver. The kernel takes the name of the
clock driver module from the init configuration module. The clock driver
name string is pointed to by the offset in the M$Clock field of the init
module.

The F$STime system call is used to set the date and time. The kernel's
handler for this function writes the new date and time to the System Globals
(D Year, D_Month, D Day, D_Second, and D_Julian fields), and then

308

DEVICE DRIVERS

calls the initialization routine of the clock driver. The clock driver must
ensure that the tick hardware is configured and running, and write the date
and time to the battery-backed clock chip (if the driver supports one).
Because the F$STime system call may be made more than once, the driver
should check whether it has already initialized the tick hardware. If so, it
should not re-initialize it. The clock driver's initialization routine is called
with the following parameters:

(a4) = Process Descriptor of calling process
(a5) = Caller's register stack frame
(a6) = System Globals

The initialization routine may destroy any registers except a4, a5, and a6. If
the routine encounters an error, it should return it in the normal way - the
carry flag set, and an error code in the dl.w register. When initializing the
tick hardware, the driver must perform three functions:

a) Install its tick interrupt handler, using the F$IRQ system
call. As there is no clock device descriptor, the driver must
use hard-coded values for the interrupt vector and software
polling priority (and the interrupt level). Although when
making the call the a2 register must not match that for any
other device installed on the same vector, this is not normally
a problem for the clock driver, as the kernel passes a2
pointing to the module directory entry for the clock driver.
However, if the clock driver uses a2 before making the
F$IRQ call, the driver writer must ensure it cannot be equal
to the device static storage address of any present or
subsequently installed device. Setting a2 to zero for the
F$IRQ system call is therefore recommended by Microware
as being safe and consistent.

b) Initialize the D TckSec (ticks per second) field of the System
Globals. It is the responsibility of the clock driver to
determine the number of ticks the tick hardware will
generate each second. This keeps the kernel independent of
the tick hardware. Any tick rate is permissible, provided that
there is an integral number of ticks per second. 10ms is a
typical period, giving 100 ticks per second. Too small a tick
interval will cause tick interrupts and process scheduling to
consume too large a fraction of the processor's time. Too large
a tick interval may delay the real-time response of processes
in a multi-tasking application, and may give too coarse a
resolution for timed sleeps and alarms.

309

DEVICE DRIVERS

c) Initialize the tick hardware, including enabling the tick
interrupts, provided the hardware has not been initialized by
a previous call to the clock driver's initialization routine.

Because the driver must set the D TckSec field of the System Globals, and
the kernel initializes this field to zero, the driver can use this field to check
whether its initialization routine has been called before - D TckSec will be
zero if the initialization routine is being called for the first time.

Having initialized the tick hardware if necessary, the clock driver must write
the new date and time to the battery-backed clock chip, if one is supported.
The time and date are in the caller's register stack frame. R$d0(a5) gives the
time as OOHHMMSS, and R$dl(a5) gives the date as YYYYMMDD (as
required by the F$STime system call).

However, if the month and day are zero, this is a request to read the date
and time from the battery-backed clock chip, if one is supported. Instead of
writing to the chip, the driver must read the current date and time from the
chip, and set the D Year, D Month, D Day, D Second, and D Julian
fields of the System Globals. The F$Julian and F$Gregor system calls can
be used to translate between Gregorian and Julian date and time formats.
Note that the D_Second field is the number of seconds left until midnight,
rather than seconds since midnight.

The kernel makes the F$STime system call with a date of zero as part of its
coldstart procedure (after the calls to open the default paths, change the
directories to the default mass storage device, and install the kernel
customization modules, if any), unless bit 5 is set in the first compatibility
byte of the init module. In this way the kernel starts the clock, and reads the
current date and time if a battery-backed clock chip is supported by the
clock driver.

The interrupt service routine of the clock driver is usually straightforward.
As with any interrupt service routine, it must determine that the interrupt
was generated by the tick hardware, and return to the kernel with the carry
flag set if not. Otherwise it must clear the tick interrupt in the tick hardware
(if it is not automatically cleared by the interrupt acknowledge cycle), and
call the kernel's tick handler. The address of the kernel's tick handler is in
the D_Clock field of the System Globals:

movea.l 0_Clock(a6),a0 get tick handler address
jmp (aO) ..go to it

310

DEVICE DRIVERS

Just like any other interrupt service routine, the clock driver interrupt
service routine may only destroy the dO, dl, aO, a2, a3, and a6 registers
(unless bit 0 of the first compatibility byte in the init module is set).

In most systems the clock tick interrupts are not produced by the same chip
that provides the battery-backed date and time facility, but by a separate
timer chip. To simplify the job of the clock device driver writer, from OS-9
version 2.3 onwards Microware's example clock drivers are separated each
into two source files. One file contains the routines for managing the clock
tick chip, and the other contains the routines for managing the date and time
chip. The files have a common interface, so the clock driver can be made for
any combination of the two chips.

311

DEVICE DRIVERS

312

	CHAPTER 12
DEVICE DRIVERS
	12.1 THE FUNCTION OF A DEVICE DRIVER
	12.2 DEVICE STATIC STORAGE
	12.3 PATH DESCRIPTOR
	12.3.1 RBF Path Descriptor
	12.3.2 SCF Path Descriptor

	12.4 SYMBOLIC DEFINITIONS
	12.5 REGISTER USAGE
	12.6 DEVICE DRIVER ROUTINES
	12.6.1 Initialize
	12.6.2 Terminate
	12.6.3 Read
	12.6.4 Write
	12.6.5 Get Status and Set Status

	12.7 INTERRUPTS
	12.7.1 Solicited Interrupts
	12.7.2 Unsolicited Interrupts
	12.7.3 Choosing Interrupt Levels

	12.8 A SKELETON DEVICE DRIVER
	12.9 CLOCK DRIVERS

