
DEVICE DRIVERS

CHAPTER 12

DEVICE DRIVERS

<
This section is intended to dispel the mystery surrounding device 
drivers. It explains the purpose of a device driver within OS-9, 
describes the operating system environment the device driver 
works in, and shows typical algorithms for particular device types. 
Particular attention is given to the use of interrupts, as interrupt-driven 
devices are central to the proper functioning of a multi-tasking computer 

(under any operating system).

The descriptions and code fragments in this section assume that the device 
driver is written in 68000 assembly language. However, device drivers can 
equally well be written in C. The section on Microware C and Assembly 
Language describes how this is done.

12.1 THE FUNCTION OF A DEVICE DRIVER
A device driver is one part of an OS-9 I/O sub-system. All I/O system calls go 
initially to the kernel. However, the kernel has no understanding of the filing 
structure of a device, or of the hardware used to control the device. The job 
of the kernel is simply to set up the software environment, such as allocating 
a path descriptor, or locating an existing path descriptor if the path is 
already open. The kernel must then call the file manager or the device driver 
to carry out operations on the device. Similarly, the file manager 
understands the data structure of the device, but it does not know how to 
handle the hardware. If the file manager wishes to perform device operations 
- such as a data transfer - it must call the device driver.

In summary, the OS-9 I/O sub-system philosophy is to split the I/O 
operations as follows:
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• The kernel allocates and de-allocates path descriptors, device table 
entries, and device static storages.

• The file manager handles the filing structure and any data editing.

• The device driver carries out physical device operations.

The device driver is therefore generally only concerned with performing low 
level physical device operations, without any understanding of why these are 
be carried out. However, this is not a strict requirement of OS-9. Device 
drivers may perform data interpretation, or other higher-level functions. For 
example, serial port drivers generally recognize certain special characters, 
such as the abort and interrupt keys. This is necessary because these keys 
must be acted upon as soon as they are received - that is, within the 
interrupt service routine. The file manager would only "see" the keys when a 
process subsequently performs a read request, which may be much later (or 
never!).

Similarly, a serial port driver for communications work might also 
incorporate a communications protocol because a received packet must be 
acknowledged within a very short time of reception, or because the file 
manager being used does not understand the protocol. It is sufficient that the 
combination of the file manager and the device driver provides all the data 
manipulation and hardware control functions.

The I/O system is normally a simple tree structure. There is one kernel, 
which can call multiple file managers. Each file manager can call multiple 
device drivers. Although it is conceivable that different file managers could 
call the same driver, in practice this is rarely done, because each file manager 
will normally have a different calling convention, and different structures for 
the path descriptor and device static storage. The RBF and PCF file 
managers are an example of this technique. PCF carefully uses the same 
path descriptor and device static storage structures as have been defined by 
the writer of RBF, so that PCF can implement an MS-DOS filing system 
using existing RBF device drivers.

12.2 DEVICE STATIC STORAGE

When considering the operation of an I/O sub-system within a multi-tasking 
operating system it is important to distinguish between "logical" paths and 
"physical" devices. A path is an operating system construct to enable a 
program to make system calls for data transfer and control on a device. The 
operating system can create more paths (given enough memory), up to some 
large limit (65535 under OS-9). A device is (normally) a construct to allow 
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the operating system to control a physical hardware object, such as a disk 
drive or a serial port. The operating system can "create" new devices, but 
usually only on a one-to-one correspondence with the hardware objects. 
Multiple paths may be open on a single device, but a path cannot be open on 
multiple devices. Note that this abstracted description relates to the kernel's 
view of devices. At a lower level (for example, in a device driver), the 
definition may become blurred. For example, a pipe does not relate to any 
hardware object - it uses a memory buffer only. Also, a device driver could 
use multiple I/O chips to provide one "device" with a complex function.

Because at any one time a device may have multiple paths open to it, or no 
paths, the path descriptor is not a suitable place to store variables for the 
control of the device. There must be one data structure in memory for each 
device. This is the purpose of the device static storage. Thus, the path 
descriptor is used to control the logical path, while the device static storage is 
used to control the physical device. The device driver is usually mainly 
concerned with the device static storage, as the device driver has the job of 
controlling the device. However, it may make use of some of the fields in the 
path descriptor, as these may provide information about the current 
configuration required for this particular I/O call.

Conversely, the file manager mainly makes use of the path descriptor for 
variables storage, as the file manager has the job of managing the logical 
path - for example, input line editing for a "read line" system call. But it may 
make use of some device static storage fields. For example, RBF maintains 
some disk structure information in the device static storage, as it is needed 
by all path-related functions using the device.

The kernel is responsible for allocating and de-allocating the device static 
storage for an I/O sub-system. The kernel allocates a new device static 
storage when a new device descriptor is installed in the device table (by the 
I$Attach system call, made implicitly when a path is opened) if either:

• The port address in the device descriptor is different from any other 
in the device table.

Or:

• Another device table entry has the same port address in its device 
descriptor, but a different device driver.

That is, the kernel considers this to be a new device if there is no device 
already in the device table using the same port address and device driver. 
Thus the kernel ensures that there is a separate device static storage 
allocated for each device currently in existence in the device table. Note that 
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by specifying a different device driver or by adjusting the port address in the 
device descriptor the programmer can coerce the kernel into allocating a 
separate device static storage for what may in fact by the same I/O interface. 
This is used in the SCSI driver system, where multiple drivers use the same 
I/O interface, and in the drivers for dual serial port chips, where separate 
"incarnations" of the driver must be created for each channel of the chip 
(because the SCF file manager does not support multi-channel drivers).

Conversely, the kernel permits multiple device table entries (for different 
device descriptors) that refer to the same device (they use the same device 
driver and port address). These "alias" device descriptors may be used to 
manage separate "channels" on the same device - such as multiple floppy 
disk drives attached to one controller - or to select different configurations 
for the device.

The device static storage comprises three or four parts. The first part is 
defined by the kernel - its size and usage is the same for all devices. Note 
that some fields are not used by the kernel - they have been defined for the 
convenience of the file manager and device driver writers, because they are 
required by many file managers and device drivers. This is an example of 
how Microware has provided a comfortable environment for the device driver 
writer, to try and limit the extent to which the programmer must learn about 
the operating system before writing a device driver. (Nonetheless, it is 
strongly recommended that you learn as much as possible about the 
operating system before writing a device driver.)

Following the kernel section, the file manager may (and usually does) require 
its own storage. The size and usage depends on the file manager, and is 
defined by the file manager writer. This part will be the same for all devices 
controlled through the same file manager. If the file manager supports 
multi-channel devices (for example, four disk drives attached to one 
interface) it will also usually require an area of storage for each channel, 
known as a drive or channel table. Therefore the third part of the device 
static storage - which exists only if the file manager supports multi-channel 
devices - contains the drive tables. This is simply an array of structures 
(drive tables), one for each channel, usually indexed by a logical drive or 
channel number (base zero). Typically the file manager will be capable of 
supporting a large number of channels, but on any given device the actual 
number will be far fewer. Therefore to conserve memory the size of the array 
is determined by the device driver (which knows how many channels the 
hardware will support) rather than the file manager.
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The last part (highest memory address) of the device static storage is the 
storage area required by the device driver. Its size and usage is determined 
by the device driver writer. It effectively comprises the static variables of the 
device driver. It is defined using the normal statements for static variable 
definition in the source files of the device driver, whereas the kernel and file 
manager parts are defined in separate source files, as described below. The 
total size of the device static storage for the kernel to allocate is taken from 
the memory size entry in the device driver module header (M$Mem). It is 
the sum of the kernel, file manager, and device driver requirements. The size 
is in the device driver module header because the device driver is at the 
bottom of the tree, so the total size is only known when the device driver is 
created. It is calculated by the linker when creating the device driver module.

To simplify this operation, Microware provides pre-prepared definitions of 
the kernel and file manager storage, already assembled, to give the static 
storage (vsect) definitions required to reserve this storage. They need only 
be included at link time when creating the device driver. For example, when 
linking an SCF device driver:

$ 168 ../LIB/scfstat.1 RELS/sc6850.r -1=../LIB/sys.1 
-O=OBJS/sc6850

and when linking an RBF device driver for a device supporting two drives:
$ 168 ../LIB/drvs2.1 RELS/rbl772.r -1=../LIB/sys.1 
-O=OBJS/rbl772

Note that 'drvs2.1' is simply a merging of three ROFs:
$ chd /dd/LIB; merge rbfstat.r drvstat.r drvstat.r 
>drvs2.1

'drvs2.F reserves storage for the kernel and RBF, and for two RBF drive 
tables (as this device driver supports two drives on one interface).

The file 'LIB/scfstat.l' is an assembly of the file 'DEFS/scfstat.a', and is used 
for device drivers that work with the SCF file manager. The file 
'LIB/rbfstat.r' is an assembly of the file 'DEFS/rbfstat.a', and is used for 
device drivers that work with the RBF file manager. It defines the storage 
required by the kernel and RBF. An RBF device driver must also reserve 
device static storage for the RBF drive tables, using the file 'LIB/drvstat.r' 
(which is an assembly of the file 'DEFS/drvstat.a') once for each drive to be 
supported. The files 'LIB/drvsl.l', 'LIB/drvs2.1', and 'LIB/drvs4.1' contain 
'LIB/rbfstat.r' followed by one, two, or four copies (respectively) of 
'LIB/drvstat.r', for device drivers supporting one, two, or four drives. By 
merging 'LIB/rbfstat.r' and multiple copies of 'LIB/drvstat.r' you can create 
versions for any number of disk drives.
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Note that the copy of 'LIB/rbfstat.r' must come first in the "merge", as the 
definitions for the kernel and file manager storage must precede the drive 
tables. Similarly, in the linker command line the appropriate static storage 
definition file (such as 'LIB/scfstat.l') must precede the driver ROF (or ROFs), 
as all of the kernel and file manager storage must precede the driver storage 
in the device static storage memory. The linker builds the final static storage 
definitions from the static storage definitions in the ROFs strictly in the 
order that the ROFs appear on the linker command line. This ensures that 
kernel references into the device static storage are correct, even though the 
kernel does not know the structure (or even the existence) of the file 
manager and driver parts of the device static storage. Similarly, file manager 
references are correct, even though the file manager does not know the 
structure of the driver part.

As described above, the source files for these storage definitions are in the 
'DEFS' directory (typically '/dd/DEFS'), as is a "make" file ('DEFS/makefile') 
to assemble and merge them. The equivalent files for the SBF file manager 
are 'LIB/sbfstat.r' (for the kernel and file manager definitions), and 
'LIB/sbfdrvtb.r' (for one drive table), although full source code is not provided 
with OS-9. The SBF static storage structures are fully defined in 
'DEFS/sbfdev.d', and in the files listed in Appendix B.

After allocating a new device static storage the kernel clears it to zeros. This 
is a very convenient software flag mechanism. If the initialization routine of 
the device driver aborts due to an error, the termination routine is always 
called by the kernel. The termination routine can "clear up" what resource 
allocation or device initialization the initialization routine managed to do 
before aborting, by looking to see if initialization flags are non-zero. For 
example, a field might be used to store the address of an allocated memory 
buffer, and will only be non-zero if the memory was actually allocated. 
However, the kernel does not support full C-like static storage initialization 
of the device static storage.

The device driver is not restricted to using only the device static storage for 
its variables and buffers. It can allocate additional memory as required using 
any of the available memory allocation mechanisms, including the general 
memory allocation system call (F$SRqMem), coloured memory, and data 
modules. Unlike the management of a program's memory allocations, the 
kernel does not keep track of memory allocated by a device driver (or any 
operating system component). It is the responsibility of the termination 
routine of the device driver to ensure that all such memory is de-allocated. 
The same philosophy applies to other resources that the device driver may 
allocate, such as creating an event or opening a path.
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12.3 PATH DESCRIPTOR

A path descriptor is a memory structure (always 256 bytes) used by OS-9 to 
manage a path. Because the path concept is concerned with the logical 
manipulation of data (data editing, filing structure, and so on), the path 
descriptor variables in the first 128 bytes are mainly used by the kernel and 
the file manager, not by the device driver. The second half of the path 
descriptor is the "options section". It contains a copy of the options section of 
the device descriptor on which the path was opened. The layout of the 
options section is defined by the file manager writer, although the device 
driver writer may define additional fields in the device descriptor (but 
outside of the options section proper), pointed to by the offset value in the 
M$DevCon field of the device descriptor extended module header.

The options section contains parameters used to select optional behaviour of 
the file manager and device driver. For example, an SCF options section 
contains all the line editing key codes, and other special characters, while an 
RBF options section contains disk format parameters. The file manager may 
also dynamically write additional fields at the end of the path descriptor 
options section that are not defined in the device descriptor options section. 
These fields are for the information of a program, which can read all 128 
bytes of the path descriptor options section using a Get Status request with 
the function code SS_Opt. For example, RBF puts a copy of the file name in 
the PD_NAME field of the options section.

The options sections of the Microware file managers are described in the 
OS-9 Technical Manual. The following paragraphs do not repeat those 
descriptions. Instead, they attempt to clarify certain areas that have caused 
difficulty to users in the past.

12.3.1 RBF Path Descriptor

RBF is not concerned with the physical layout of the disk (cylinders, surfaces, 
physical sector numbering14). It uses a logical sector numbering convention 
in which sector 0 is the first sector on the disk, and the other sectors are 
numbered sequentially. Some controllers (such as SCSI controllers) use the 
same convention, so the device driver does not need to translate. Otherwise, 

14 Disk drive terminology is often confused. A disk drive will have one or more disks on the 
same spindle. Each disk has one or two data surfaces. Data is read and written in concentric 
rings on each surface, using a read-write head on each surface. Each ring on each surface is a 
track, while the rings on all surfaces at the same radius are known as a cylinder. Therefore the 
total number of tracks equals the number of cylinders multiplied by the number of surfaces. 
Within each track the data is subdivided into equal sectors, numbered from zero or one upwards 
on each track.
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the device driver must use the fields in the options section of the path 
descriptor to convert the logical sector number (LSN) to a cylinder number, 
surface (or head) number, and sector number. The calculation can be 
somewhat complex. The following fields of the options section are relevant:

PD_DRV

PD_CYL

PD_SID

PD_SCT

PD_TOS

PD_TOffs

PD_S0ffs

PD_LUN

PD_LSNOffs

PD_TotCyls

PD_CtrlrIO

Logical drive number. This is the number used (base zero) by RBF to index 
into the drive tables. It may also be used by the device driver as the physical 
drive number, if the drives are numbered sequentially from zero upwards 
(but see PD_LUN).

Number of cylinders available for data (for LSN validity check, and 
partitioning).
Number of data surfaces (tracks per cylinder).
Number of sectors on each track, except track zero (cylinder zero, surface 
zero).
Number of sectors on track zero.
First physical cylinder (not track) to use. After calculating the cylinder 
number (base zero) from the LSN, this value must be added to the cylinder 
number to form the true physical cylinder to access. This feature is used to 
skip cylinder zero on the Microware Universal floppy disk format, as 
different controllers place different restrictions on the format used on track 
zero.
First sector number on each track (zero or one). After calculating the sector 
number (base zero) within the track from the LSN, this value must be added 
to the sector number to form the true sector number to access. This feature 
is used because certain disk formats number the sectors on a track from 
zero, while others number the sectors from one.
Physical drive number. If the interface is connected to multiple controllers 
(as with SCSI), then this is the drive number on that controller. This field 
may be equal to PD_DRV if only one controller is supported by the 
interface, and the drives are numbered sequentially from zero. This is 
typically the case for a simple floppy disk controller.
Offset for logical sector numbers. The driver must add this value to the LSN 
supplied by RBF before using the LSN in a controller command, or 
converting it to physical parameters. This allows support for partitioning on 
a hard disk.
Total physical cylinders on the disk (for formatting, and LSN validity check). 
This value is usually equal to PD_CYL plus PD TOffs (or the sum of these 
for all partitions) plus any allowance for cylinders reserved for automatic 
defect handling by the disk controller.
Controller number. This field is only used if the interface can be connected 
to multiple controllers (as with SCSI).

In addition to the parameters described above, other format variables are 
specified in the path descriptor options section:
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PD-TYP

PD_DNS

PD_Rate

PD_SSize

Disk type flags. If bit 7 is set, the disk is a hard disk, otherwise it is a floppy 
disk. This bit is only of importance for controllers that support both hard 
and floppy disk drives. Prior to OS-9 version 2.4, bit 0 was set for an 8" disk, 
and reset for a 5!4" (or 3/2") disk. An 8" disk requires a rotational rate of 
360rpm, and a data rate (MFM) of 500kbps, while a 514" disk requires a 
rotational rate of 300rpm, and a data rate (MFM) of 250kbps. Note that as 
far as the floppy disk controller and device driver are concerned, there is no 
difference between a 5!4" disk and a 3‘/j" disk. As more disk formats were 
developed this became restrictive, and from OS-9 version 2.4 onwards bit 
zero is not used. Bits 1:4 define the disk size:
Value Disk size

1 8’disk
2 5%" disk
3 3‘/l" disk

while the rotational speed and data rate are defined in the new field 
PD Rate. If bits 1 to 4 of PD TYP are zero, the driver knows that the 
descriptor is from before OS-9 version 2.4, and so bit zero of PD_TYP is 
used, and PD_Rate is not defined.
Two further bits are defined. If bit 5 is set, track zero (cylinder zero, surface 
zero) is double density, otherwise it is single density. This allows the support 
of old formats that have single density (FM) on track zero, and double 
density (MFM) on other tracks. Finally, for a hard disk (bit 7 is set), if bit 6 is 
set, the hard disk is removable.
Data density flags - if bit 0 is set, the disk is double density (MFM encoding), 
otherwise it is single density (FM encoding). Single density is used only 
rarely today, in support of old formats on products using historical standards.
This field is defined for OS-9 version 2.4 onwards. Bits 0:3 specify the 
rotational speed:
Value Speed

0 300rpm (3!4* or 514")
1 360rpm (8", or PC-AT 514")
2 600rpm

and bits 4:7 specify the data rate:
Value Data rate

0 125kbps (37/ or 5!4" single density only)
1 250kbps (37/ or 514" double density, or 8“ single density)
2 300kbps (ditto, but rotating at 360rpm)
3 500kbps (high density, or 8" double density)
4 1000kbps
5 2000kbps
6 5000kbps

Combinations of these fields allow the support of all commonly used floppy 
disk formats. However, not all controllers and disk drives will support all 
rotational speeds and data rates.
Number of bytes per sector. This is the block size RBF will assume when 
requesting data transfers. Prior to OS-9 version 2.4 only a value of 256 was 
permitted. From OS-9 version 2.4 onwards any value that is a power of 2, 
from 256 to 32768, is permitted. Also, when opening a file, and before 
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performing any data transfers or allocating any data buffers, RBF will make 
a Get Status call to the driver with the function code SSVarSect This 
gives the driver the opportunity to check or alter the value in PDSSize to 
correspond to the medium in use. For example, a device descriptor for a 
SCSI hard disk drive may have zero in this field. The device driver updates 
the field with the actual disk sector size returned from the drive controller in 
response to the SCSI READ CAPACITY command.
If the driver returns no error in response to the SS VarSect call, RBF 
assumes the value in PDSSize is the correct sector size to use. If the driver 
returns the error E$UnkSvc (unknown request), RBF assumes a default 
sector size of 256 bytes. (Any other error code will cause RBF to abort the 
opening of the file with an error.) Having determined the sector size, RBF 
writes it to the path descriptor options section field PDSctSiz (a long 
word). It is this value that RBF uses for subsequent operations, and it can be 
read by a program, using the Get Status request SS Opt to return a copy of 
the options section.

Microware supports a range of floppy disk formats. Although the preferred 
distribution format is the Universal format (which does not use cylinder 
zero), this is a recent standard, and many OS-9 systems use other - older, or 
more conventional, or higher data density - formats. The user may therefore 
have a number of different "alias" device descriptors for the same floppy disk 
drive, specifying different format parameters. The Microware-defined 
format codes depend on the density of track zero - single density (FM) or 
double density (MFM) - and the number of the first sector on each track 
(sector offset). In addition, the Universal format (code 38U0) does not make 
use of cylinder zero - the cylinder offset is one. The commonly used formats 
are:

Format code Track 0 
density

Sector offset Cylinder offset

3803 FM 0 0
3807 MFM 0 0

38W7 MFM 1 0

38U0 MFM 1 1

The format codes shown above are for 3‘a" disks. The initial "3" of the format 
code is changed to "5" for 5'/<" disks. All of these formats use double density on 
all tracks (other than track zero for 3803 format), 80 cylinders, and 16 
sectors per track (10 sectors on track zero for 3803 format).

A device driver written to support a wide range of formats will need to take 
account of all of the above parameters when initializing the disk controller, 
and when performing data transfers. There is the risk for a removable disk 
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(such as a floppy disk) that the user will insert a disk of a different format. In 
this case the user will normally access the disk using a different device 
descriptor, with the appropriate format parameters. The device driver must 
check at each transfer (or perhaps only when a path is opened - RBF makes 
the Set Status call SS_Open to the driver) whether the format parameters 
have changed, requiring a re-initialization of the disk controller.

One simple way of doing this is to keep a record (in the device static storage) 
of the address of the device descriptor last used to initialize the controller. 
The address of the device descriptor can be taken from the device table 
entry. The address of the device table entry for this device is in the path 
descriptor location PD DEV (it is set up by the kernel), and the field 
V$DESC in the device table entry contains the address of the device 
descriptor. If the current device descriptor address is different from the one 
last used to initialize the controller, a re-initialization is required. This is not 
foolproof - the user might change the parameters in an already loaded device 
descriptor, or unlink a device descriptor and load a new one at the same 
address - but it is simple and effective. The alternative is to check each one 
of the format parameters against the values last used to initialize the 
controller.

Certain fields of the options section are used to control the behaviour of RBF 
and the device driver:

PD_VFY Disable verify after write. If this field is non-zero the device driver should
not perform a verify (read) of each sector after writing it. Verify-after-write 
is only used with disk structures that do not support error detection and 
correction - usually floppy disks. Other device drivers (for example, for SCSI 
hard disk drives) will ignore this field.

PD_SAS Minimum segment allocation size. When RBF is asked to extend a file (for
example, by a write at the end of the file), if the extension is shorter than 
this value (in sectors) RBF will allocate this many sectors to the file. When 
the file is closed, RBF trims back the file to its true length (provided the file 
pointer is at the end of the file). This reduces the fragmentation problem 
caused by two files “leap-frogging" each other as they are written to.

PD_Cntl A word of bit flags, having the following effects when set:
0 - enable formatting and writing to sector zero. If this bit is not set, the 
driver should return an error E$Format if it is requested to format the disk, 
or to write to sector zero. Hard disk device descriptors are usually format 
protected in this way, with a special device descriptor being loaded in order 
to format the disk, or set a new boot file (the os9gen utility writes the 
address of the boot file to sector zero).
1 - enable multi-sector transfers. If this bit is not set, RBF will only request 
the device driver to transfer one sector with each request. This bit should be 
reset for controllers that can only transfer one sector at a time.
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3 - the device driver can determine the disk capacity. If this bit is set, the 
device driver supports the SS DSize Get Status call, returning the disk 
capacity in sectors.

PD_MaxCnt Maximum transfer size. RBF will not ask the device driver to transfer more 
than this number of bytes in one request. This may be set to a limit imposed 
by a DMA controller, for example. If the controller cannot transfer more 
than a certain number of sectors in one request, either this field must be set 
to that number of sectors multiplied by the sector size, or the device driver 
must be able to divide up a large request into manageable pieces.

The RBF path descriptor variables section (the first 128 bytes of the path 
descriptor) contains three fields of interest to the device driver writer:

PD_DEV Address of the device table entry for the device on which the path was
opened. The device driver can use this pointer to get the address of the 
device descriptor (field V$DESC in the device table entry).

PD_DTB Address of the drive table. RBF multiplies the logical drive number
(PD DRV) by the size of one drive table, and adds it to the address of the 
first drive table in the device static storage, to form this address. The device 
driver must copy the first 22 bytes of LSN zero to the drive table at this 
address whenever LSN zero is read or written.

PD_BUF Buffer address. When RBF calls the read or write routines of the device
driver, this field contains the address of the memory to read to or write from.

12.3.2 SCF Path Descriptor

The SCF path descriptor options section is mainly composed of special key 
codes for line editing and keyboard signals. If a key code is set to zero, an 
incoming character is not checked against the key code. This permits line 
editing functions to be disabled. Note that the xmode utility allows the user 
to modify the options section of an SCF device descriptor in memory, while 
the tmode utility modifies the path descriptor options section for path 0, 1, or 
2 (standard input, standard output, and standard error) of its inherited 
paths. Certain other options fields modify the line editing behaviour of SCF. 
Of these, the most commonly used are:

PD_EKO Enable echo. If this field is non-zero, SCF echoes each character as it is read
during a "read" (I$Read) or "read line" (I$ReadLn) request.

PD_ALF Automatic line feed. If this field is non-zero, SCF outputs a line feed
character ($0A) after each carriage return character ($0D) in a "write line" 
(I$WritLn) request.

PD_PAU End of page pause. SCF counts carriage return characters ($0D) as they are
written by "write” and "write line" requests. It resets the count if any "read" 
or "read line" request is made. If this field is not zero, when the count 
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reaches the value in PD_PAG SCF does not output the carriage return 
character until a character has been received. Note that this applies even to 
characters written by "write" requests, so it is important to clear this field 
when sending binary data.

PD_EOR End of record character (usually [CR]). If this field is non-zero, SCF
compares every incoming character with this field, and terminates a "read" 
or "read line" request when a character matches this field. Note that if echo 
is enabled (see PD EKO) the carriage return character ($0D) is echoed in 
response to this character being received.

PD_EOF End of file character (usually [ESC]). If this field is non-zero, and a
matching character is read as the first character of a "read" or "read line" 
request, SCF aborts the request with an "end of file" error (E$EOF). For a 
"read line" request, the end of file condition is reported if the first character 
in the edit buffer matches this field, even if other characters have previously 
been entered and then erased.

PD_PSC End of line pause key code (usually [*W]). SCF copies this field to the
V_PCHR field of the device static storage. The "data received" interrupt 
service routine of the device driver should compare each incoming character 
with the V_PCHR field (if non-zero). If a match is found, the device driver 
sets the V PAUS field of the device static storage. When SCF is about to 
write a carriage return character from a "write" or "write line" request, it 
checks the V_PAUS field. If non-zero, SCF waits for a character to be 
received (other than a match for PD_PSC) before outputting the carriage 
return.

PD_I NT Interrupt key code (usually [*C]). SCF copies this field to the V INTR field
of the device static storage. The device driver "data received" interrupt 
service routine should check each incoming character against this field (if 
non-zero). If a match is found, the driver sends an interrupt signal (3 - 
S$Intrpt) to the last process to use the device. The process ID of this last 
process is copied by the kernel to the field V_LPRC in the device static 
storage. (V LPRC is set to zero by SCF if the process has died, and it has no 
parent. If it has a parent with a path open on the same device, the parent's 
ID is copied to V_LPRC). When SCF sees this character as part of a "read 
line" request, it acts as if the "delete line" key code had been received.

PD_QUT Abort (or quit) key code (usually [*E]). Similar to PD_INT, SCF copies this
field to the V QUIT field of the device static storage, and the device driver 
sends an abort signal (2 - S$Abort) if a matching character is received.

Two fields - PD_XON and PD_XOFF - are used for software flow control. 
They usually have values $11 and $13 respectively ([’Q] and [*S]) - the 
ASCII XON and XOFF characters. SCF copies these fields to the V_XON and 
V XOFF fields of the device static storage, and the device driver uses these 
values (if non-zero) as the character codes to restart and stop transmission 
(respectively) in both directions. That is, if an XOFF character is received, 
the driver suspends transmission until an XON character is received. 
Conversely, if the driver's receive buffer is becoming full (it has reached a 
"high water mark"), it sends an XOFF character, and then sends an XON 
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character when the buffer has emptied by some pre-determined amount (it 
is reduced to a "low water mark").

Lastly, the device driver uses two fields to determine the desired 
configuration of a serial port (if that is what is being controlled):

PD_PAR Character format. The bits of this field are used as follows:
0:1 parity generated and expected:
0 none
1 even
3 odd

2:3 bits per character:
0 8
1 7
2 6
3 5

4:5 number of stop bits:
0 1
1 1.5
2 2

Not all devices will be able to support all character formats.
Typically a device driver will configure the device to automatically pause 
transmission if the CTS handshake input is negated (relying on the fact that 
in most circuit designs this input will float asserted if not connected), and 
will assert the RTS (or DTR) handshake output. The driver will also 
configure the device to generate an interrupt when the DCD handshake 
input changes state (relying on the fact that in most circuit designs this 
input will float securely to either the asserted or negated condition if not 
connected). However, some device drivers (not Microware's) also use bits 6 
and 7 to control the use of the hardware handshake lines:

6 set to disable hardware handshake (RTS/CTS)
7 set to disable recognition of DCD input

PD_BAU Baud rate code - see the table of baud rates below.

Code Rate Code Rate
0 50 9 2000
1 75 10 2400
2 110 11 3600
3 134.5 12 4800
4 150 13 7200
5 300 14 9600
6 600 15 19200
7 1200 16 38400
8 1800 255 external

An "external" baud rate is set in hardware, and is not controllable by the 
device driver. Not all devices will be able to support all baud rates. Note that 
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no means is given of separately defining the baud rate for receive and 
transmit.

The device driver for a serial port will use these values to configure the 
interface during the driver's initialization routine. However, a program may 
wish to dynamically change the configuration on an open path. The program 
can modify these fields in the path descriptor options section using the Set 
Status system call with the SS_Opt function code (the ss opt() C library 
function). SCF will copy the new values to the path descriptor options 
section, and then pass the call on to the driver. On receiving this call the 
driver should check whether the device configuration fields in the path 
descriptor have changed since the last time the interface was initialized. If 
so, the driver should re-initialize the interface.

If the device driver is controlling an "intelligent" communications board, the 
board may also support the detection of the flow control and signal 
characters. For this type of device, the driver should also check to see 
whether these fields have changed. If any of the configuration fields have 
changed, the driver should re-initialize the board.

While this dynamic re-configuration capability of the device driver is 
desirable, early Microware example SCF device drivers did not provide this 
feature. As a result there are many SCF device drivers in existence that take 
no notice of changes to the device configuration fields of the path descriptor.

If a device descriptor or path descriptor options section specifies a device 
configuration that the device (or the device driver) does not support, the 
device driver should return a "bad mode" error (E$BMode).

12.4 SYMBOLIC DEFINITIONS
Microware have provided symbolic definitions in both C and assembly 
language for the structures and constants likely to be used by a device driver. 
These files are all in the 'DEFS' directory - it is strongly recommended that 
you study all of these files carefully before writing a device driver. The 
assembly language files are pre-assembled to make the library 'LIB/sys.l'.

Therefore a device driver written in assembly language does not need to pull 
in (use assembler directive) any of these files - the references are resolved at 
link time. Device drivers written in C will need to #include the relevant 
files. A typical list for an RBF device driver might be:
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rbf.h

MACHINE/reg.h 

procf d.h 

path.h 

module.h

errno.h

signal.h

sg_codes.h

Path descriptor options section structure.
Processor register definitions.
Process descriptor structure.
Path descriptor variables section format.
Module header structures (including device 
descriptor).
Error codes.
Signal codes.
Set Status and Get Status function codes.

Note that the order of the #include statements for these files is important, 
as some files declare structures that are used in other files. The only 
operating system structure for which there is not a proper C definitions file 
is the System Globals. The file 'DEFS/setsys.h' does give the offsets within 
the System Globals structure to each field, but the System Globals is not 
defined as a structure, and the fields are not "typed".

In this book the symbolic names for the OS-9 error codes are sometimes 
given using the assembly language definitions in the file 'DEFS/funcs.a', and 
sometimes given using the C language definitions in the file 'DEFS/errno.h'. 
The symbol names are the same in both sets of definitions, except that the C 
definitions start with E_ and use upper case only, while the assembly 
language definitions start with E$ and use both upper and lower case. For 
example, the C symbol for the "not ready" error (code 246) is E NOTRDY, 
while the assembly language symbol is E$NotRdy.

12.5 REGISTER USAGE
OS-9 was originally written completely in assembly language, although parts 
are now written in C. Therefore parameters are passed to and returned from 
the device driver in processor registers. In the following descriptions, as 
elsewhere in this book, parentheses around a register name mean "points to", 
and a suffix of ".b", ".w", or ".1" gives the size of the object in the register as 
byte, word (16 bits), or long (32 bits). Where the object is smaller than the 
register containing it, the object is always in the low order bits of the 
register, starting with bit zero.

Because the initialization and termination routines of the device driver are 
called directly by the kernel (as part of the I$Attach and I$Detach system 
calls), the calling convention to these routines is defined by the kernel, and is 
therefore the same for all drivers:
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(al) Device Descriptor module
(a2) Device Static Storage
(a4) Process Descriptor of calling process
(a6) System Globals

The calling conventions for the other routines (usually read, write, get status, 
and set status) are determined by the file manager, and may vary, especially 
for the read and write routines. Usually, however, the following conventions 
are adhered to:

(al) Path Descriptor
(a2) Device Static Storage
(a4) Process Descriptor of calling process
(a5) Caller's register stack frame
(a6) System Globals

The other registers may contain other parameters. The return convention for 
read and write varies according to the file manager. The error return 
convention for all of the functions is (usually) the same as that used 
throughout the operating system: the carry flag of the Condition Codes 
register is set if there was an error, in which case dl.w contains the 
appropriate OS-9 error code.

The kernel saves all the registers it uses before calling the initialization and 
termination routines of the device driver, except for the a6 register when 
calling the termination routine. Therefore the driver need only preserve the 
stack pointer and the high byte of the status register (and a6 in the 
termination routine). In general, file managers also save all the processor 
registers they use before calling the device driver functions. This is true of 
SCF and RBF. However, other file managers may only save certain registers, 
in order to speed up calls to the device driver, so it is important to check the 
documentation on the file manager.

12.6 DEVICE DRIVER ROUTINES
A device driver is a separate OS-9 module, so the addresses of its routines 
are not known to the kernel and file manager. However, the kernel and file 
manager need to be able to call the device driver routines. To achieve this, 
the "execution entry offset" (M$Exec) in the module header of the device 
driver gives an offset from the start of the module to a table of offsets from 
the start of the module to each of the routines.
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Two routines are absolutely required - initialization and termination - as 
these are called by the kernel when an I/O sub-system is created and 
deleted.

Any other routines are only called by the file manager, and their presence or 
absence is a matter for the file manager specification. File managers can 
specify any number of device driver routines for any purpose. 
Conventionally, however, the file manager requires four routines, making six 
in total. The code fragment below shows a typical psect statement and 
routine offset table for a device driver:

use /dd/DEFS/oskdefs.d
Typ_Lang equ (Dr1vr<<8)+0bJct module type and language
Att_Revs equ ((ReEnt+SupStat)<<8)+0 attributes and revision
★ number
Edi t1on equ 1 software edition number

psect SC68681.Typ .Lang.Att_Revs,Ed1t1on.0,EntryTable

EntryTable dc.w Init Initialize
dc.w Read input data
dc.w Wri te output data
dc.w GetStat wildcard call (IJGetStt)
dc.w SetStat wildcard call (ISSetStt)
dc.w Term termlnate
dc.w 0 exception handler (see below)

Notice that the last parameter to the psect statement is the label of the 
routine offset table. It is from this statement that the linker takes the value 
to put in the "execution entry offset" field of the module header. Note also 
that the positions of the initialize and terminate routine offsets within the 
table are fixed, as these routines are called by the kernel. Therefore if the file 
manager does not require one or more of the read, write, get status, or set 
status routines these entries must still exist (replacing the routine label with 
zero), and if the file manager needs additional routines their offsets must be 
added to the end of the table shown above.

Microware have indicated that future versions of the kernel may implement 
an additional "exception handler" routine, using a seventh table entry as 
shown above. This entry point will be called if a hardware exception (such as 
bus error) occurs during driver execution.

12.6.1 Initialize

This routine is called directly by the kernel. It is only called when the I/O 
sub-system is being created - that is, a new device static storage has been 
allocated. It is not called on the first usage of each channel on a 
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multi-channel device. The kernel calls the initialization routine as part of 
the I$Attach system call. This call can either be made explicitly by a 
program (such as the iniz utility), or implicitly whenever a path is opened on 
the device. The initialization routine may be called more than once as the I/O 
sub-system is terminated and then re-created, but there will always be an 
intervening call to the termination routine as part of the termination of the 
I/O sub-system.

Some I/O devices must only be initialized once after reset - a repetition of 
the reset would cause problems. There is no operating system mechanism to 
determine whether this is the first time this I/O sub-system has been 
brought into being since reset. If it is important to know this, the 
initialization routine can use a data module. It attempts to create a data 
module whose name is constructed from the device port address. If there is 
no error, the data module did not already exist (otherwise a "known module" 
error E_KWNMOD would be returned), so this is the first time the I/O 
sub-system is being created.

This data module mechanism is also useful for sharing hardware with one or 
more other drivers. Common variables (such as the current state of 
write-only registers) can be held in the data module. Also, if the module does 
not already exist on initialization the driver knows it is the first user and 
must initialize the hardware. If the initialization and termination routines 
maintain a use count in the data module, the termination routine can know 
that it is the last user, and must terminate the hardware.

The initialization routine has a number of responsibilities. It must:

a) Initialize the device static storage as needed. Usually the 
driver only initializes its own fields of the device static 
storage, but it may initialize other fields to pass device 
information to the file manager. For example, an RBF driver 
sets the field V NDRV to the number of drives supported 
(which must be no larger than the number of structures in 
the drive table), and the DD TOT field of each drive table 
structure to a non-zero value (to permit RBF to read LSN 
zero).

b) Initialize the hardware, ready for subsequent calls to the 
other routines, such as read and write. A device driver 
expecting unrequested data to be received (such as an 
asynchronous serial port) must also set up the device ready 
for data to be received. For example, the interface chip would
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be set up to generate interrupts when characters are received.

c) Install the interrupt service routine in the polling table 
(F$IRQ system call) if the device is to be interrupt driven. If 
the device driver is to receive interrupts on more than one 
vector, it will need to install multiple interrupt service 
routines. OS-9 places no limit on the number of interrupt 
service routines one driver can install.

The initialization routine is passed the address of the device descriptor 
module, not the address of the path descriptor (there may be no open path if 
an explicit I$Attach system call is being made). However, the Microware 
definitions in the 'LIB/sys.l' libraiy only include definitions for the offsets 
into the options section of the path descriptor - there are no symbolic 
definitions for accessing the options section of the device descriptor. As the 
two options sections have (by definition) the same structure, the programmer 
can use the same symbols - with a constant offset - to access the options 
section of the device descriptor. For example:

move.b PD_BAU+M$DTyp-PD_OPT(al),dO

will access the baud rate code in the device descriptor (assuming the al 
register is pointing to the device descriptor), while:

move.b PD_BAU(al),d0

will access the baud rate code in the path descriptor (assuming the al 
register is pointing to the path descriptor). This works because M$DTyp is 
the offset from the start of the device descriptor to the first entry in the 
options section, while PD_OPT is the offset from the start of the path 
descriptor to the start of the options section.

The device driver should not sleep as part of the initialization routine. The 
kernel does not build the device table entry until the initialization routine 
returns, so a concurrent I/O call from another process on the same device 
would cause a recursive call to the I$Attach system call and the 
initialization routine of the device driver. Also note that the V_BUSY field of 
the device static storage is not set to the process ID of the calling process at 
this time (see below), as this is a function of the file manager.

12.6.2 Terminate

The termination routine is essentially the converse of the initialization 
routine. It is called directly by the kernel as part of the dismantling of an I/O 
sub-system, from within the I$Detach system call. The kernel will only call 
the termination routine when the device use count (in the device table entry) 
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has been decremented to zero. That is, there are no paths open on the device, 
and any explicit calls to I$Attach (and I$ChgDir) have been complemented 
by an equal number of explicit calls to I$Detach. The kernel will always 
de-allocate the device static storage after calling the termination routine, 
and (in all versions of the kernel to date) ignores any error returned by the 
termination routine.

The termination routine must:

a) Wait for any "write-behind" activity to finish. For example, 
characters may be waiting in a buffer to be transmitted out of 
a serial port under interrupt, perhaps paused by software or 
hardware handshake.

b) Shut down the hardware. In particular, the hardware must be 
disabled from generating any interrupts or other autonomous 
behaviour.

c) De-allocate any resources allocated by the device driver. 
Examples are buffer memory allocated, data modules created 
or linked to, paths opened, and events created or linked to.

d) Remove the driver from the interrupt polling table, using the 
F$IRQ system call. Each interrupt service routine that the 
driver installed must be un-installed.

Note that if the initialization routine returns an error to the kernel, the 
I$Attach system call will call the termination routine before de-allocating 
the device static storage.

12.6.3 Read

As mentioned above, the read routine (if it exists) is only called by the file 
manager. Therefore the purpose of the routine and the parameter 
convention used when calling it are determined by the file manager writer. 
In general it is used to get data from the device. As an illustration, for this 
and the other routines the purpose and parameter convention are shown for 
the SCF and RBF file managers. These two file managers adhere to the 
general parameter convention described above, so only the additional 
parameters are described below.
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□ The Sequential Character File Manager (SCF)
Purpose: read one character.
Parameter convention:

Passed: nothing
Returns: dO.b = character read

SCF drivers usually maintain a circular input buffer in the device static 
storage (or dynamically allocated in the initialization routine) filled under 
interrupt. The interrupt service routine for the "data received" interrupt 
takes the character from the chip and puts it in the circular buffer. The 
driver read routine takes a character from this buffer, waiting (by sleeping) if 
the buffer is empty. The interrupt service routine is responsible for waking 
up the driver when a character is received, and for detecting and acting on 
certain special characters - flow control (XON and XOFF), "interrupt" 
(usually [ “ C]), "quit" (usually [’£]), and "end-of-line pause" (usually [*W]).

The "data received" interrupt service routine is also responsible for sending 
the "pause" flow control character (XOFF) when the buffer is becoming full - 
usually at a "high water mark" of three quarters full. Conversely, the read 
routine is responsible for sending the "restart" flow control character (XON) 
if a "pause" had been requested and the buffer is now sufficiently empty - 
usually at a "low water mark" of one quarter full.

Characters may be received with errors. For example, parity checking may be 
enabled for an asynchronous serial port, and a character may arrive with 
incorrect parity. As this error status is normally supplied by the interface 
chip with each character, the "data received" interrupt service routine must 
save the error status as it reads each character from the chip. The standard 
Microware drivers simply bitwise OR the error status of each character into 
the V ERR field of the device static storage. The interrupt service routine 
also sets a bit in this field if the input buffer overflows, so one or more 
characters are lost. The read routine checks this field when returning a 
character - if it is not zero, the routine clears the field and returns a "read" 
error (E$Read).

Under this scheme the calling program is not able to determine which 
character was in error. This is not important when simply reading from a 
keyboard, but may be unsatisfactory for communications applications. A 
device driver for such an application might maintain a second circular buffer 
containing a status byte for each received character. When SCF requests a 
character for which the status is not zero, the driver returns a "read" error 
(E$Read), and saves the status in the device static storage field V_ERR. 
Such a driver could also support the Get Status call function SS_ELog (read 
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error log), returning a copy of the latest saved error status, permitting the 
program to determine the type of error.

If no characters are available in the input buffer, the read routine must 
sleep. It is then woken by the interrupt service routine when a character 
arrives. This is described in detail below in the discussion of interrupts. The 
read routine may also be woken from its sleep by a signal from another 
process (sent to the process that called the driver), or by a "quit" or 
"interrupt" signal sent to the process by the interrupt service routine on 
receipt of one of the special key codes. The read routine must decide whether 
to go back to sleep and wait for a character, or to abort the read with an 
error. A typical device driver for terminals and printers will abort only if the 
signal received was a "deadly" signal. Prior to OS-9 version 2.4 the deadly 
signals were signal 0 (the kill signal - S$Kill), signal 2 (the quit signal - 
S$Abort), and signal 3 (the interrupt signal - S$Intrpt). From OS-9 
version 2.4 onwards all signals below 32 are considered deadly, except signal 
1 (the wakeup signal - S$Wake).

The use of an input buffer filled under interrupt provides a "type ahead" 
capability. That is, provided the device is active (a path is open to the device, 
or the device has been explicitly initialized), characters can be received in 
advance of any read request from a program. This allows a user to type in a 
command in advance of the previous command completing. More 
importantly, it reduces the real-time response requirement of a program 
that is receiving data. Typically an SCF device driver has an input buffer of 
80 characters. Thus a program can delay 80 character times (about 80ms at 
9600 baud) before reading the data without losing any data.

There is no requirement under OS-9 that device drivers must be interrupt 
driven. The read routine of an SCF device driver could simply poll the status 
register of the interface chip until a character had been received, and then 
return that character to SCF. However, this would destroy the multi-tasking 
capability of the operating system, as rescheduling does not take place while 
a system call is executing - the system call must go to sleep or exit to allow a 
reschedule.

An alternative approach is to poll the status register and, if no character is 
available, to sleep for one tick. Sleeping for one tick requests a reschedule, 
but the process remains active. This allows another active process (if there is 
one, and it is of sufficient priority - see the chapter on Multi-tasking) to 
become the current process, otherwise the driver (or rather, the process 
calling the driver) remains the current process, and continues to poll the 
status register.
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Clearly, the most efficient technique - both in terms of processor time usage, 
and of speed of response to a received character - is to use interrupts. 
However, the above description shows that OS-9 does not force any 
particular style of operation on the device driver.

□ The Random Block File Manager (RBF)
Purpose: read one or more consecutive sectors from a disk.
Parameter convention:

Passed: dO.l = number of sectors
d2.1 = starting Logical Sector Number (base 0) 
PDBUF(al) = memory to read to

Returns: nothing

Note: prior to OS-9 version 2.4 the number of sectors was in dO.b only, and 
could not exceed 255. Now the number of sectors is only limited by the 
PD MaxCnt field of the path descriptor, which sets a limit on the total 
number of bytes RBF may ask the driver to transfer. The same change 
applies to the write routine.

RBF is not concerned with the physical disk structure. It uses a Logical 
Sector Numbering scheme (base zero). The device driver must (if necessary) 
convert this to physical disk parameters, as described above in the section on 
the Path Descriptor.

RBF is also not concerned with retries. If there is an error on reading, it is 
up to the driver to decide whether to try again to read the sector (or sectors). 
If the driver returns an error to RBF, then RBF will consider it to be an 
unrecoverable error, and abort the filing operation, which may cause some 
damage to the disk structure. The disk controller may do retries itself, in 
which case the device driver will not itself implement any retries. SCSI hard 
and floppy disk controllers typically operate in this way. For simple floppy 
disk controllers the device driver may retry several times, occasionally 
restoring (seeking to cylinder zero) and re-seeking, in case the problem is a 
head misalignment.

On reading (or writing) LSN zero the driver also has the responsibility to 
copy the first 22 bytes into the first part of the appropriate drive table 
structure in the device static storage. (Note that RBF has pre-calculated the 
address of the drive table structure for this drive, and placed it in the path 
descriptor field PD_DTB.) This 22 byte structure contains information about 
the disk structure, both logical and physical (refer to the OS-9 Technical 
Manual section on the RBF Drive Table). A device driver may elect to use the 
physical format fields of this structure in place of some of the fields of the 
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path descriptor when calculating cylinder, surface, and sector numbers. This 
allows a driver to dynamically adapt to different disk formats (although of 
course it does assume that the driver can read LSN zero). The useful fields 
are:

DD_T0T Total data sectors on disk (maximum LSN plus 1) (for LSN validity
checking). RBF will not issue a request for an LSN greater than or equal to 
this value. Therefore the initialization routine of the device driver must set 
this field non-zero in each drive table structure, to allow RBF to read LSN 
zero.

DD_TKS Sectors per track. (The field DD_SPT contains the same value as a word
rather than a byte).

DD_FMT Disk format flags. The bits have the following meanings when set:
0 double sided disk 
1 double density disk 
2 double track density disk

For example, if bit 1 of the path descriptor field PD_DNS is set, indicating 
that the drive is double track density, but bit 1 of DD_FMT read from LSN 
zero is not set, indicating a single track density disk, then the driver knows 
that it must instruct the drive controller to "double step", that is, to move the 
head by two steps for each cylinder number (because the drive supports 
cylinders twice as closely packed radially as the disk has on it). Similarly, 
even though the drive supports double sided floppy disks (PD SID in the 
path descriptor is 2), if bit 0 of DD_FMT is not set the driver knows that the 
disk is single sided, and so adjusts its calculation of the physical parameters 
from the LSN.

12.6.4 Write

The write routine of the device driver is usually very much the complement 
of the read routine, the only difference being the direction of data transfer - 
the write routine (generally) sends data to the device. Much of the code for 
the read and write routines is shared in most device drivers. As in the read 
routine, the specific function of the write routine is defined by the file 
manager specification. The basic requirements of an SCF device driver and 
an RBF device driver are shown below as examples.
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□ The Sequential Character File Manager (SCF)
Purpose: write one character.
Parameter convention:

Passed: dO.b = character to write
Returns: nothing

SCF drivers usually maintain a circular output buffer in the device static 
storage (or dynamically allocated in the initialization routine) filled by the 
write routine, and emptied under interrupt. The interrupt service routine for 
the "transmitter ready" interrupt takes the character from the circular buffer 
and puts it in the chip. The driver write routine waits (by sleeping) if the 
buffer is full, and is woken by the interrupt service routine when the buffer 
has emptied a little.

Once the buffer has been completely emptied the interrupt service routine 
must disable further "transmitter ready" interrupts from the chip. Therefore 
the write routine must check whether the "transmitter ready" interrupts are 
disabled, and if so it must write the character directly to the chip (rather 
than putting it in the buffer), and enable the interrupts. This starts a stream 
of interrupts, each one being serviced by putting the next character into the 
chip. The stream is only stopped when the buffer becomes empty - the 
calling program has no more characters to send, or is supplying them at a 
rate below the transmission rate of the chip.

The "data received" interrupt service routine or the read routine may wish to 
send a flow control character (XON or XOFF), which must take precedence 
over any characters waiting in the output buffer. If "transmitter ready" 
interrupts are disabled, the flow control character is put directly in the chip, 
and the interrupts are enabled (starting a transmission stream that may be 
only one character long). Otherwise a flag is set in the device static storage. 
The flag is checked by the "transmitter ready" interrupt service routine at 
the next interrupt, and the flow control character is sent instead of taking 
the next character from the output buffer.

If the output buffer is full when SCF calls the write routine to send a 
character, the write routine must sleep. It is then woken by the interrupt 
service routine when space becomes available in the output buffer. Typically 
the interrupt service routine will not wake the write routine when just one 
space is available, but waits until the buffer has subsided to a low water 
mark, typically 10 characters left to send. This reduces the number of 
sleep/wakeup cycles, so reducing the processor load. This is described in 
detail below in the discussion of interrupts.
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The use of an output buffer provides a "write behind" mode of operation. 
That is, provided there is sufficient space in the output buffer (typically 140 
bytes in size), a program making a write request is returned to immediately, 
and continues with further operations while the data is transmitted at the 
rate permitted by the interface chip. This can be very important in 
preventing unacceptable delays - for example, when a real-time process 
prints an error or status message. However, under certain circumstances it 
may cause problems, as a program may need to know when a packet of data 
has completed transmission. In such applications the driver might be 
modified to provide an additional Set Status function to send a signal when 
the output buffer becomes empty.

The write routine may also be woken from its sleep by a signal from another 
process (sent to the process that called the driver), or by a "quit" or 
"interrupt" signal sent to the process by the "data received" interrupt service 
routine on receipt of one of the special key codes. The write routine must 
decide whether to go back to sleep and wait for a character, or to abort the 
write with an error. As with the read routine, a typical device driver for 
terminals and printers will abort if the signal received was a "deadly" signal.

SCF provides a read-write lockout. That is, even if the read routine goes to 
sleep (allowing another process to execute and make system calls), the write 
routine will not be called until the read routine has woken up and exited. A 
process making a system call that requires a write call to this device will be 
"I/O queued" until the read request finishes. The same mechanism applies if 
a read request is made while a write request is in progress. This mechanism 
is explained in detail in the section on Resource Control in the chapter on 
File Managers. It greatly simplifies the job of the device driver - which can 
use common device static storage locations for read and write calls - as well 
as ensuring that a message cannot appear on a display while a program is 
waiting for input (which would lose the waiting program's prompt).

□ The Random Block File Manager (RBF)
Purpose: write one or more consecutive sectors to a disk.
Parameter convention:

Passed: dO.l = number of sectors
d2.1 = starting Logical Sector Number (base 0) 
PDBUF(al) = memory to write from

Returns: nothing

This routine is very much the complement of the read routine, and most RBF 
device drivers will use the same subroutines for most of both operations. As 
with the read routine, the write routine must translate the RBF logical 
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parameters to the appropriate physical parameters for the disk controller, 
initialize the controller whenever the format parameters have changed, and 
copy the first 22 bytes of the data to the drive table whenever LSN zero is 
being written (provided the write operation is successful).

In addition to writing the data, a device driver for a controller that does not 
support error detection and correction (EDC) should verify that the write 
operation was successful, by reading the sector that has just been written. 
Some controllers implement a "verify" command that reads the sector to 
check it, but without returning the data to the interface. In the absence of 
such a facility the device driver must read the sector to a local buffer in the 
device static storage (or dynamically allocated in the initialization routine). 
The controller will generate an error condition if the sector was not written 
successfully. The device driver can then retry the write operation a few 
times, eventually returning a "write" error (E$Write) to RBF if the sector 
cannot be written successfully.

For maximum confidence of data integrity the driver can compare the data 
read back by the verify operation with the data in the write buffer. This will 
reveal any errors in the transfer of data between the interface and the 
controller.

If the PD_VFY field of the path descriptor is not zero the driver should not 
perform the verify operation. Verifying after each sector is written is very 
time consuming, because the controller must wait for the disk to rotate a 
complete revolution before reading the sector that was just written. 
Therefore some programs - such as the copy and backup utilities - set the 
PD VFY field non-zero while writing large blocks of data, to speed up data 
transfers.

RBF provides the same read-write lockout as described above for SCF. This 
greatly reduces the complexity of the device driver, and is appropriate 
because most block-structured devices cannot support concurrent read and 
write operations. The lockout is for the whole device. Therefore RBF will not 
call the driver to read or write on this or another drive on the same interface 
while a previous read or write request is not yet complete.

12.6.5 Get Status and Set Status

These are "wild card" routines. That is, they are a mechanism to permit any 
function to be implemented. By convention, the Get Status routine is used to 
request information from the device or driver, while the Set Status routine is 
used to request device or driver operations.
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In general the file manager will perform the same device lockout for these 
routines as for the read and write routines, so it is permissible for the device 
driver to sleep as part of one of these calls. However, SCF does not 
implement device lockout in its Get Status routine. Therefore SCF device 
drivers must not sleep in a Get Status routine, or else the driver must 
implement the device lockout itself. In practice, if the SCF device driver 
writer wishes to add extra functionality to get information from the device, 
and the function may need to sleep, a Set Status call should be used rather 
than a Get Status call, to overcome this problem.

As with all I/O system calls, the Get Status (I$GetStt) and Set Status 
(I$SetStt) system calls go first to the kernel. The specific function required 
is indicated by a function code parameter to the system call (in the dl.w 
register). The kernel checks this code to see if it is known to the kernel. If so, 
the kernel executes the desired function. In either case, the kernel then calls 
the Get Status (or Set Status) routine of the file manager, passing it the same 
function code. If the file manager returns an "unknown request" error 
(E$UnkSvc) for a function code that the kernel recognized, the kernel 
returns no error to the calling program. Otherwise the kernel returns the 
error returned by the file manager. Of course, if the kernel recognizes the 
function code, but experiences an error in executing the appropriate 
function, it does not call the file manager, but returns the error to the calling 
program.

Typically the file manager will behave like the kernel - that is, it checks the 
code, executes the appropriate function if it recognized the code, and then 
calls the Get Status (or Set Status) routine of the device driver. If the driver 
returns an "unknown request" error for a function code that the file manager 
recognized, the file manager returns no error to the kernel.

This mechanism whereby the call is passed from the kernel to the file 
manager, and from the file manager to the device driver, allows each of the 
three modules to implement any number of functions that may be unknown 
to the other two. And because even recognized calls are still passed down the 
tree, a call that requires action by two modules can be implemented. For 
example, the SS Opt Set Status function to alter the options section of the 
path descriptor is acted on by the file manager, but because it is also 
afterwards passed to the device driver, the driver can use the new 
parameters in the options section to reconfigure the interface chip.

The kernel recognizes no Set Status function codes, and only two Get Status 
functions: SS Opt (return a copy of the path descriptor options section, 128 
bytes), and SS_DevNm (return a copy of the device descriptor module 
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name). These requests are made by the C library functions _gs_opt() and 
_gs_devn() respectively.

In addition to calls from a program, the file manager may generate Get 
Status or Set Status calls to the device driver. This is an alternative to 
defining additional routines in the driver, and has the advantage that the file 
manager writer can add more such calls in a later release of the file manager 
without the need to change the device driver - the driver will automatically 
return an "unknown request" error to the new calls. The kernel does not 
generate such calls, although it may do in future releases.

As with other system calls, the parameters are passed from the calling 
program in processor registers. However, because any function can be 
defined by the kernel, the file manager, or the device driver, the kernel or 
file manager cannot simplify the environment of the device driver by passing 
the parameters in process registers to the device driver. Instead, the driver 
must read the calling program's register stack frame (built by the kernel 
when the system call is made), which is pointed to by the PD_RGS field of 
the path descriptor. Similarly, to return values to the calling program the 
driver must write to the stack frame. For example, to read the calling 
program's d2 register (in this case, into the device driver's dO register):

movea.l P0_RGS(al),a5 get stack frame pointer 
move.l R$d2(a5),d0 get caller's d2 register

In C an equivalent code fragment would be:
x=pathdesc->pd_rgs->d[2]; /* get caller's d2 register */

The file 'DEFS/process.a' defines the symbolic definitions - such as R$d2 - 
for the structure of the stack frame in assembly language, while 
'DEFS/MACHINE/reg.h' declares the same for C. If the file manager itself 
generates a call that requires parameters, it must save the current parameter 
register values from the stack frame, put in the parameters it wishes to pass, 
call the device driver routine, and then restore the saved values. This 
complication is not needed if the call is one that will not be made from a 
program - it is only internally generated by the file manager. In this case the 
file manager could pass the parameters in processor registers, as is done for 
the read and write routines.

In general, a file manager will recognize at least the SS Opt function of the 
Set Status call. This requests the file manager to update the options section 
of the path descriptor. The file manager implements this call, rather than the 
kernel, because normally the file manager will only permit the calling 
program to alter certain fields of the options section. For example, SCF will 
allow the program to modify any of the fields of the options section proper, 
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while RBF will only allow modification of fields up to and including the 
PDSAS field.

SCF and RBF generate a Set Status call SS Open to the device driver when 
a path is opened or created, so a new path descriptor has been created, and a 
Set Status call SS_Close when the last image of a path is closed (the path 
descriptor is about to be de-allocated). SCF also generates a Set Status call 
SS_Relea when process closes a path and the process does not have any 
remaining duplications of the path. This is done in case a process requested 
the sending of a signal when data was received (SS_SSig Set Status call to 
the driver), and then died without being sent the signal, and without having 
cancelled the request.

If the cancellation was not forced by SCF, when new data arrived the driver 
might send a signal to a new (and unsuspecting) process that was created 
with the ID released by the dead process. Note that the device driver writer 
must bear this kind of complication in mind when adding Set Status or Get 
Status functions to a device driver. A process that has installed a request for 
action at some future time may die unexpectedly in the intervening period, 
and this should not be catastrophic to the system. An SCF driver can use the 
SS_Relea and SS_Close calls from the file manager to ensure that all such 
pending requests for a process are cancelled. This requires that the driver 
save the process ID and system path number when the request is first made, 
so that it can match the pending request with the call from the file manager.

While device drivers will vary in the Get Status and Set Status functions that 
they support, a device driver for general use should support at least the 
functions that are supported by the standard device drivers supplied by 
Microware as example source code, and in the OS-9 implementations that 
Microware has carried out. This ensures a common base level environment 
that all programs can expect. The list below shows the standard functions for 
an SCF and an RBF device driver. The assembly language symbolic name for 
the function code is given, together with the C library function provided to 
make the call from a C program.

□ Get Status calls for an SCF Driver

Name C function Description
SS_Ready _gs_rdy Returns the number of characters available in the input

buffer to the caller's dl register. If there are no characters 
in the input buffer, returns "not ready" error - E$NotRdy
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Name C function Description
SS_EOF _gs_eof Returns “end of file" error if at end of file. As SCF does not 

support a filing structure, there is no static end of file 
condition, so this function never returns an error in an SCF 
device driver.

The assembly language code below is typical of the Get Status routine of an 
SCF driver, and illustrates the use of the calling program's stack frame. Note 
that although the calling program passes the function code in the dl.w 
register, the file manager moves it to the dO.w register before calling the 
device driver. Of course, the function code could also be obtained from the 
dl.w register of the calling program's stack frame.

* Getstat
* SCF device driver Get Status "wild card" routine
* Passed:

*

dO.w = function code 
(al) = Path Descriptor 
(a2) = Device Static Storage

*

* Returns
*

Getstat:

(a4) = 
(a6) =

: depends

movea.l 
movea. 1 
cmp1 .w 
bne.s 
move.l

beq.s 
move.l 
bra. s

Process Descriptor
System Globals 

on function

PD_RGS(al),a5 get caller's stack frame pointer 
V_P0RT(a2),a3 get port (interface chip) address
#SS_Ready,dO check data ready?
GetStatlO ..no
InBufCnt(aZ),d0 get number of characters 1n Input

buffer
NotRdyErr ..none: return "not ready" error
dO,R$dl(a5) return number in caller's dl
GetStatEx ..exit: carry 1s clear

GetStatlO cmpi.w 
bne.s

* The carry flag is
* end of file condi

#SS_EOF.dO check for end of file?
UnkSvcErr ..no: unknown request
now clear. Fall through to exit - there 1s never . 

tion on a terminal or printer:

GetStatEx rts

* Return 
NotRdyErr

"not ready 
move.w 
or1 
rts

" error:
#E$NotRdy,dl
#Carry,ccr

set error code in dl.w register 
set carry flag to show error

* Return 
UnkSvcErr

"unknown request" error: 
move.w #E$UnkSvc,dl 
ori #Carry,ccr
rts

set error code 1n dl.w register 
set carry flag to show error
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□ Get Status calls for an RBF Driver

Prior to OS-9 version 2.4 there were no standard Get Status calls for an RBF 
device driver. The following calls were added to RBF drivers in OS-9 version 
2.4. As described with each call, drivers written prior to OS-9 version 2.4 - 
and so returning an "unknown request" error to these calls - will still work 
with OS-9 version 2.4, but without the benefit of some of the added features 
of OS-9 version 2.4.

Name C function

SS_VarSect (none)

SS_DS1ze (none)

Description
RBF makes this call when opening a path, to determine 
whether the driver and device can support sector sizes other 
than 256 bytes. If so, the driver should check the value in 
PD_SSize. If it is not zero, the driver should verify that it is 
a valid sector size, supported by the device and the driver. If 
so, the driver returns no error, otherwise the driver returns 
an error - typically "parameter error" - E$Param - or 
"hardware error" - E$Hardware If PDSSize is zero, the 
driver should put the current device sector size in 
PD SSize, and return no error. If the driver does not 
support sector sizes other than 256 bytes (for example, most 
drivers prior to OS-9 version 2.4), the driver returns an 
"unknown request" error, in which case RBF assumes a 
sector size of 256 bytes, and ignores any value in PD SSize. 
If the driver returns an error other than "unknown request" 
RBF aborts the opening of the path, otherwise RBF puts the 
sector size in PDSctSiz. Note that RBF makes this 
request before allocating its sector buffers, so the driver 
cannot use the memory pointed to by PD BUF.

Request the disk data capacity in sectors. The format utility 
makes this call, to avoid the need to use the path descriptor 
options section parameters to calculate the disk data 
capacity if the controller can determine the capacity, thus 
allowing one form of device descriptor to be used for a range 
of disk drives. If the disk controller can determine the disk 
data capacity (that is, the disk space usable by the filing 
system, excluding sectors reserved by the controller or disk 
drive), the driver should issue a command to the controller 
to determine the disk capacity, and return it in the calling 
program's d2.1 register (in the register stack frame). 
Otherwise the driver should return an "unknown request" 
error, in which case the format utility calculates the disk 
capacity from the number of cylinders, tracks per cylinder, 
and sectors per track specified in the path descriptor options 
section.

289



DEVICE DRIVERS

□ Set Status calls for an SCF Driver

Name C function Description
SS_Opt _ss_opt Modify the path descriptor options section. The device driver 

must check whether the parameters it uses to configure the 
device (such as PD PAR and PD_BAU) have changed. If 
so, the driver must reconfigure the device. If there is no 
change, the driver should not reconfigure the device, as 
altering the configuration registers of an interface chip may 
corrupt characters currently being transmitted or received.

SS_SS1g _ss_ssig Request that the driver send a signal to the process when 
data becomes available. The calling program passes the 
desired signal code in the d2.w register. The device driver 
must save not only the signal code, but also the caller's 
process ID, and the system path number (from the path 
descriptor field PD_PD), in order to know which process to 
send the signal to, and to provide a check for a subsequent 
SS_Relea call. Once the signal has been sent (usually by 
the interrupt service routine, when a character is received), 
the driver "forgets" the call. A new SS SSig call must be 
made by the program if it wishes to receive another signal. 
If data is already available in the input buffer the driver 
must send the signal immediately. The driver must mask 
interrupts up to the interrupt level of the device while 
checking for input data (and perhaps sending a signal), to 
avoid a race condition with an incoming character invoking 
the interrupt service routine.
Normally the device driver will permit only one such request 
to be pending at any one time. That is, if a process has made 
this request but has not yet be sent a signal (and has not 
cancelled the request with SSRelea), then a "not ready" 
error - E$NotRdy - is returned to any other SSSSig 
request. Also, typically the driver will return a "not ready" 
error to any call to the read routine while an SS SSig 
request is pending.

SSJJCOn _ss_dcon Request that the driver send a signal when the DCD (Data 
Carrier Detect) handshake input becomes asserted. This 
request (and the SS DCOff, SS EnRTS, and SS DsRTS 
requests) is only appropriate for a serial port device with 
modem handshake lines (typically available on all 
asynchronous serial ports, such as RS232C). This request is 
similar to the SS SSig request, except that the read routine 
does not return a "not ready" error if an SS DCOn request 
is pending. This function can only be supported if the device 
can generate an interrupt when DCD becomes asserted 
(otherwise the driver must return an "unknown request" 
error - E$UnkSvc).

SS_DCOff _ss_dcoff Request that the driver send a signal when the DCD (Data
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Name C function Description
Carrier Detect) handshake input becomes negated. This is 
similar to the SS DCOn request. This function can only be 
supported if the device can generate an interrupt when DCD 
becomes negated (otherwise the driver must return an 
"unknown request" error - ESUnkSvc).

SS_Relea _ss_rel Cancels any outstanding SS SSig, SS_DCOn, and 
SS DCOff requests for this process on this path.

SS.EnRTS _ss_enrts Requests that the driver assert the RTS handshake output 
of the device. The circuit configuration or the interface chip 
behaviour may make it more appropriate to assert the DTR 
handshake output signal instead - the device driver 
documentation should make it clear which signal is 
manipulated by this function. If no output signal can be 
manipulated manually by the device driver it should return 
an "unknown request" error.

SS_DsRTS _ss_dsrts This is the complement of the SS_EnRTS request. It 
requests that the device driver negate the RTS (or DTR) 
handshake output of the device.

□ Set Status calls for an RBF Driver

Name C function Description

SS_Reset _ss_rest

SS_WTrk _ss_wtrk

Restore the drive head to cylinder zero. Floppy disk drives 
usually have a "head at cylinder zero" sensor. The only way 
in which the controller can know which cylinder the drive 
head is on is by knowing how many steps the head has 
taken from cylinder zero. After many steps backwards and 
forwards a slight positional error may accrue, due to the 
mechanical characteristics of the drive. The driver will 
therefore usually automatically use a special controller 
command to restore the head to cylinder zero when reading 
or writing a sector on cylinder zero, or after a read or write 
operation gives a "seek error" (in order to reconfirm that the 
head is on the correct cylinder). During a format operation, 
however, the controller cannot give a seek error, as it is not 
reading sector address information from the unformatted 
disk. Therefore the format utility makes this request after 
formatting a number of cylinders, to ensure the head 
alignment is correct (the driver will move the drive head to 
the correct cylinder on the next "format a track" request).
Request to format a track of a disk. The calling program 
(usually the format utility) specifies a surface of a cylinder 
to format (see below).
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The SS_WTrk request is used by the format utility, which issues a request 
to format each surface of each cylinder. The cylinder number (base zero) is 
specified in the caller's d2.w register. The surface number (base zero) is 
specified in bits 8:15 of the caller's d3.w register. Many controllers (such as 
SCSI controllers) have a command to format the whole disk. A driver for 
such a controller only reacts to a SS_WTrk request for track zero (both 
cylinder and surface are zero), in response to which the driver issues the 
controller command to format all of the disk. Such a driver takes no action 
and returns no error for requests on other cylinders or surfaces.

Many floppy disk control circuits use Western Digital controller chips, such 
as the 177x series, and the 279x series. These controllers require the 
computer to provide a complete byte stream to format the track. Because 
these controllers are in common use, and generating such a "track buffer" 
requires a great deal of detailed knowledge and programming effort, 
Microware has included the generation of a Western Digital track buffer in 
the format utility. The buffer is pointed to by the caller's aO register, and 
can be transferred directly to the controller chip in the same way as read or 
write data.

A driver for a different type of controller may need to build a track buffer or 
sector address list. This requires the use of the "physical sector interleave 
factor” to determine the order in which the sectors are to be numbered on 
the track. (This allows the optimization of reading or writing logically 
consecutive sectors). Because this is also a common requirement, the format 
utility builds a sector number list, otherwise known as an interleave table. 
The list is pointed to by the caller's al register, and is the same for every 
track. It consists of an array of bytes, one for each sector number, in the 
order in which the sector numbers are to be used on the track. The sector 
numbers are base zero. Therefore the driver should add the offset in 
PD SOffs to each sector number when building the track buffer or sector 
address list.

The third group of controllers comprises those (such as SCSI controllers) 
that require only a high level command to format a track or the whole disk. 
Such a controller may allow the driver to specify the physical sector 
interleave factor. The interleave factor is given in the PD_ILV field of the 
path descriptor options section. However, this field cannot be modified by the 
SS Opt Set Status call. Therefore, in order to allow the user to specify the 
interleave factor using the *—i’ option, the format utility passes the 
interleave factor in the d4.b register (using the value in PD_ILV if the i’ 
option is not used). Therefore the driver should use the value in the caller's 
d4.b register, rather than the value in PD ILV.
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In order that the user can format a single track density disk in a double track 
density drive, the format utility also passes a field of format flags in the 
d3.b register. This field has the same structure as the DD FMT field of LSN 
zero and the drive table, but applies separately for each track. For example, 
bit 0 is zero when formatting surface (side) zero, and one when formatting 
surface one (or other surfaces), rather than indicating whether the disk is 
single or double sided. To support disks with more than two surfaces, bits 
8:15 of the d3.w register specify the surface number (base zero).

Some drivers (particularly those for "intelligent" controllers, such as SCSI 
controllers) also implement the SS_DCmd Set Status request, allowing the 
calling program to pass any command directly to the controller. There is no 
set parameter format for this request, and the calling program must know 
both the request parameter format and the controller command and 
response structure.

12.7 INTERRUPTS
This section discusses the purpose of interrupts, and how they are used 
under the OS-9 operating system. Although OS-9 makes no requirement 
that a device driver must use interrupts, they are essential to the proper 
operation of any multi-tasking or real time operating system. Interrupts are 
used for two distinct purposes:

a) To signal the occurrence of hardware events for which there 
may be no process waiting. Examples are clock ticks, and 
serial port type-ahead and write-behind. I have named this 
an unsolicited interrupt, because the interrupt occurs 
without being specifically requested.

b) To wake up a sleeping process that is waiting for the 
completion of a hardware operation, so allowing the processor 
to execute other processes. Examples are disk and tape 
operations. I have named this a solicited interrupt, because 
the interrupt cannot occur unless a process has requested the 
interrupt and is waiting for it.

Of course, unsolicited interrupts can only occur if the device driver (or other 
software) has enabled interrupt generation in the interface chip. 
Nonetheless, the distinction between solicited and unsolicited interrupts is 
an important one, with significant implications for the device driver writer.
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Interrupts are a function of external hardware, and are therefore totally 
asynchronous to the normal program flow of control. It is most likely that the 
process waiting for the interrupt (if there is one!) is not executing at the time 
of the interrupt. It will be asleep, and another process will be executing. It is 
this asynchronicity that gives rise to all of the conceptual and programming 
problems of interrupts. Once this concept has been mastered the 
programming precautions necessary to use interrupts are obvious and simple.

An interrupt is handled by an interrupt service routine. Interrupt service 
routines are normally in device drivers, because it is the device drivers that 
handle the hardware that causes the interrupts. However, this is not a fixed 
requirement of OS-9. Any software operating in system state can install an 
interrupt service routine (using the F$IRQ system call) - for example, a 
kernel customization module or a system state trap handler. The interrupt 
service routine itself can be located anywhere in memory, although it is 
normally located within the module that installed it. Otherwise there may be 
a risk that the module containing the interrupt service routine is unlinked 
before the corresponding interrupts are disabled.

The 68000 family of microprocessors supports 199 separate interrupt vectors 
- 7 autovectors (25 to 31) and 192 normal vectors (64 to 255). An OS-9 
interrupt service routine services one such vector (although multiple 
interrupt service routines can be installed on the same vector). Because OS-9 
is completely customizable, interrupt service routines can be dynamically 
installed and removed, using the F$IRQ system call. At coldstart the kernel 
sets all of the exception jump table entries for interrupts to point to the 
kernel's interrupt handler function, and builds a table in the System Globals 
of 199 pointers, all initially null.

When the F$IRQ system call is made to install an interrupt service routine, 
the kernel finds a free entry in the array of structures known as the 
interrupt polling table. It adds the entry to the linked list pointed to by the 
root pointer for the vector on which the interrupt service routine is being 
installed. Thus the interrupt polling table contains up to 199 separate linked 
lists, intertwined together. Within each linked list the order of the entries is 
determined by the "polling priority" value passed to the F$IRQ call - a low 
priority value puts the entry nearer the root of the list. If two entries have 
the same priority value the chronologically later entry is placed after the 
earlier entry. A priority value of zero is a special case - the kernel ensures 
that this is the only entry on the specified vector. If the linked list ("queue") 
for this vector is not empty when the request with priority zero is made, the 
caller is returned a "vector busy" error (E$VctBsy). The same error is 
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returned if an F$IRQ call is made for a vector on which there is already an 
entry installed with a priority of zero.

The interrupt polling table entry contains the address of the interrupt 
service routine, the static storage pointer passed to the F$IRQ call (usually 
the address of the device static storage), and the "port address" passed to the 
F$IRQ call. When the processor initiates interrupt exception processing it 
jumps to the exception jump table entry for the interrupting vector, which 
jumps to the kernel's interrupt handler. The kernel uses the vector number 
to select the appropriate root pointer. It then calls the interrupt service 
routine from the first entry in the queue (lowest priority value). If that 
routine returns the processor carry flag set, the kernel calls the routine from 
the next entry, and so on until a routine returns the carry flag clear (or the 
queue is exhausted - see below).

This technique allows all 199 vectors to be supported without wasting 
memory. Multiple devices can use the same vector. However, this is normally 
only necessary for autovectored devices (the vector is determined by the 
interrupt level), as there are only 7 autovectors. The F$IRQ system call is 
also used to remove an entry from the interrupt polling table, permitting 
complete termination of the resources of a device.

The installed interrupt service routine is called by the kernel with the a2 
register containing the same static storage pointer (and the a3 register 
containing the same "port address") as was passed to the F$IRQ system call. 
The static storage pointer will normally be the address of the device static 
storage for the interrupting device, allowing the device driver and interrupt 
service routine to have common access to shared variables. As the interrupt 
service routine is normally part of the device driver module, the interrupt 
service routine will use the same symbolic names for the variables as the 
main body of the device driver. The "port address" in the a3 register is not 
used at all by the kernel - it is passed merely as a convenience to the 
interrupt service routine (which could otherwise have read it from the device 
static storage).

The interrupt service routine is only permitted to destroy the dO, dl, aO, a2, 
a3, and a6 registers (unless bit 0 of the first compatibility byte in the init 
module is set). An interrupt service routine will not normally modify the 
processor interrupt mask in the status register, except perhaps to 
temporarily set the mask to level 7 to mask interrupts from other devices 
when executing code fragments that interact with other interrupting devices.
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The interrupt mask should never be lowered below the interrupt level of the 
interrupting device, as this could lead to nested interrupts, eventually 
crashing the system. If the interrupt service routine cannot handle one 
interrupt from the device before it generates another interrupt, it will not 
help to expose the system to the second interrupt before the first has been 
handled! When the interrupt service routine finishes, it returns to the kernel 
with the rts instruction just like any other subroutine, not the rte 
instruction. In summary, the calling convention for an interrupt service 
routine is:

Passed: (a2) = static storage (usually device static storage) 
a3.1 = port address 
(a6) = System Globals

Returns: carry set if not this driver's interrupt 
May destroy: d0-dl/a0/a2~a3/a6

While the kernel's interrupt handler does not make any use of the static 
storage pointed to by the interrupt polling table entry, the static storage 
pointer value is used to identify an entry in the linked list for a vector when 
the F$IRQ call is used to remove an entry from the polling table. The kernel 
determines that the call is being used to remove an entry because the 
interrupt service routine address (in the aO register) is zero. It then scans the 
linked list for the given vector, looking for a match for the given static 
storage pointer (in the a2 register). This implies that two entries on the same 
vector must not be installed with the same static storage pointer. This is not 
a problem - different device drivers (even different incarnations of the same 
device driver module) will have different device static storage addresses, and 
a driver will not need to install two interrupt service routines on the same 
vector.

An interrupt service routine cannot make use of most of the system calls. 
This is because the interrupt may occur while a process is making the same 
system call (or a related one), and a "nested" call might damage operating 
system memory structures. The following system calls are available for use 
by interrupt service routines (the kernel masks interrupts during critical 
code fragments in these system calls):

F$Event

F$Send
F$AProc

F$NProc

All event functions except Ev$Creat, Ev$Delet, 
Ev$Link, and Ev$Info.

Send a signal.

Put a process into the active queue.

Make the next process in the active queue the
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F$Move

F$CCtl
F$Time

F$Julian

F$Gregor

current process.

Copy a block of memory.

Flush, enable, or disable the processor caches.

Get the current date and time.

Convert Gregorian date and time to Julian.

Convert Julian date and time to Gregorian.

Because of the asynchronous nature of OS-9 signals - able to cause the 
asynchronous execution of a signal intercept handler function - there is 
often conceptual confusion between interrupts and signals. The confusion is 
sometimes increased because most interrupt service routines send signals. 
Interrupts are a function of external hardware and the interrupt circuitry of 
the processor. Interrupts are masked using the interrupt mask field of the 
processor's status register. By contrast, signals are a software function only, 
and are masked by the F$SigMask system call. If an interrupt service 
routine sends a signal, the receiving process's signal intercept handler is not 
called until the process next runs in user state, which cannot occur at least 
until the interrupt service routine has completed. The signal intercept 
handler is not called during the execution of the interrupt service routine, 
and interrupts are not masked when a signal intercept handler is called.

While the job to be done by an interrupt service routine varies widely, some 
basic principles apply. The interrupt service routine must first ascertain that 
its device caused the interrupt, usually by reading a status register from the 
interface chip. If not, it simply returns to the kernel with the processor's 
carry flag set. If the interrupt service routine was installed in the polling 
table with a priority of zero then it does not need to check that its device 
caused the interrupt, as it is the only device using this vector number. This is 
an essential mechanism for some interfaces that have no status flag showing 
that they have an interrupt pending.

Once the interrupt service routine has verified that its device generated the 
interrupt, it must:

a) Clear the interrupt to the processor. Many normal vectoring 
devices clear the interrupt automatically once they have sent 
the interrupt vector to the processor (interrupt acknowledge 
cycle).

b) Carry out any immediately required operations. These must 
be kept to a minimum - processes cannot run while an 
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interrupt is being serviced, and other interrupts on the same 
and lower interrupt levels cannot be serviced. In general, if at 
all possible operations should be left to be carried out by the 
device driver main body once it has been woken - which may 
incur a delay of tens of milliseconds.

c) Wake up any waiting process. This refers to the main body of 
the device driver having executed a "sleep" request (F$Sleep) 
on behalf of the calling process, waiting for the interrupt to 
occur. For a solicited interrupt there will always be a waiting 
process. For an unsolicited interrupt there may be a waiting 
process, but not always.

The handling of interrupts, as with most of the code in device drivers, is very 
much to do with understanding and managing the hardware. However, a 
discussion of the control of hardware interface devices is outside the scope of 
this book. From an operating system point of view the important element is 
the interaction with any waiting process. It is with this aspect that the 
following discussion is concerned.

12.7.1 Solicited Interrupts

A solicited interrupt should be used wherever the device driver estimates 
that a hardware operation will take longer than the time that would be 
required for the driver to go to sleep and be woken by an interrupt service 
routine. That is, more processor time will be used by polling the interface 
status register until the operation is complete than by waiting for an 
interrupt.

Solicited interrupts are relatively easy to handle. The device driver decides 
that a hardware operation is going to take some time, and rather than wait 
by polling a status register it elects to give up its usage of processor time and 
wait for an interrupt. As the interrupt cannot occur until the driver has 
performed the device function that initiates the interrupt mechanism, 
control is straightforward:

1) Set a flag in the static storage indicating to the interrupt 
service routine that a process needs waking, together with the 
ID of the process to wake (the current process). It is usually 
convenient to combine the two items, because no process has 
a process ID of zero. Therefore if the static storage field 
containing the ID of the process to wake is zero, no process is
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waiting to be woken.

2) Initiate the device operation, with the interface chip set to 
generate an interrupt when the operation is complete.

3) Go to sleep. The F$Sleep system call will return when the 
process is woken by a signal, or - for a timed sleep - when 
the sleep time expires. A timed sleep is only used if the driver 
wishes to implement a timeout on the hardware operation.

It is very important not to reverse operations 1 and 2. The interrupt may 
come in at any time after the device operation has been initiated, and the 
interrupt service routine must know that it has a process to wake. It does not 
matter if the interrupt occurs between stages 2 and 3 (that is, before the 
driver has executed the "sleep" request). The kernel leaves the signal sent by 
the interrupt service routine pending in the process descriptor. The F$Sleep 
system call sees that a signal has been received and immediately returns to 
the driver without putting the process to sleep.

Once the driver has been woken it must verify that the interrupt service 
routine sent the signal - the signal may have come from another process 
communicating with the process that called the device driver. If the 
hardware operation is not complete the driver must go back to sleep (unless 
it decides that the received signal was "deadly"). Because the driver is 
executing in system state, all the signals sent to the process are queued in the 
process descriptor until the process returns to user state (at the end of the 
system call that called the driver). Therefore no signals are lost. The 
"wakeup" signal - S$Wake - is an exception. It is not queued, and is 
therefore only suitable for use by an interrupt service routine waking up a 
device driver.

The driver is woken by each signal received. The kernel sets a flag in the 
process descriptor to show that the latest signal caused a wakeup, so that 
when the driver goes back to sleep (because the signal was not from the 
interrupt service routine), the F$Sleep system call permits the sleep - it 
does not return immediately to the driver, even though a signal is pending 
for the process.

Because this mechanism is so commonly used, Microware have defined two 
fields in the kernel part of the device static storage to support it: V_BUSY 
and V_WAKE. These fields are not used at all by the kernel. The field 
V_BUSY contains the ID of the calling process, set by the file manager as 
part of its interlock on the device (see the section on Resource Control in the 
chapter on File Managers). The field V_WAKE is the flag field described 
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above. The driver copies the process ID to this field, setting it non-zero as an 
indication to the interrupt service routine that a process needs waking. The 
interrupt service routine clears the field (after taking the process ID) as a 
handshake to the main body of the driver, and to prevent further wakeups. 
For example:

move.w 
bsr

V_BUSY(a2).V_WAKE(a2) 
IssCmd

set flag and process ID 
Initiate device operation

Loop moveq #0.d0 Indicate Indefinite sleep
os9 FJSleep sleep until woken
tst.w V_WAKE(a2) woken by Interrupt?
bne.s Loop ..no; go back to sleep

In this example the driver does not consider any signal is "deadly" - that is, a 
signal important enough to abort the operation. Therefore if on wakeup it 
finds that it has not been woken by the interrupt service routine, it goes back 
to sleep without checking the signal that caused the wakeup.

Note the use of the V_BUSY field as the source of the process ID. Most file 
managers put the current process ID in this device static storage field. 
However, the kernel does not set this field, and so it is not valid during the 
initialization and termination routines. A driver that needs to use interrupts 
within the initialization or termination routines must take the process ID 
from the process descriptor:

move.w P$ID(a4),V_WAKE(a2) set flag and process ID

If a common "sleeping" subroutine is used that assumes V_BUSY contains 
the process ID, then the initialization and termination routines could copy 
the process ID to the field. However, the initialization routine must be sure 
to clear this field before exiting, as the file manager will expect it to be clear 
in subsequent I/O calls (see the chapter on File Managers). Note that it is in 
any case inadvisable to sleep within the initialization routine (see the 
preceding section on the Initialize routine).

The corresponding interrupt service routine would be as shown below, 
assuming the routine has already determined that this is its interrupt, and 
taken any necessary action to clear it:

IRQExit

move.w 
beq.s 
cl r.w 
moveq 
os9
moveq 
rts

V_WAKE(a2) ,d0 
IRQExit 
V_WAKE(a2) 
#S$Wake,dl 
FJSend
#0.dl

get ID of process to wake 
..none; (should not happen) 
show valid interrupt wakeup 
send special wakeup signal 
send the signal
clear carry - Interrupt serviced 
return to kernel
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Note the use of the signal code S$Wake. As already described, the kernel 
assigns special properties to this signal code, so that its only function is to 
ensure that a process is in the active queue.

12.7.2 Unsolicited Interrupts

Unsolicited interrupts - such as from serial port received data - are slightly 
more complex to handle. The device may generate an interrupt at any time, 
so it is important to prevent timing race conditions between the interrupt 
service routine and the main body of the device driver. This is done by 
preventing the recognition of the interrupt by the processor during critical 
code fragments in the main body of the driver. To do this, interrupts are 
masked in the status register up to the interrupt level of the device.

The interrupt level of the device is specified in the M$IRQLvl field of the 
device descriptor. The initialization routine of the driver can build a status 
register image with the interrupt mask set to that level, and save it in the 
device static storage for later use:

move.b MJIRQLvl(al),d0 get device Interrupt level
Isl.w #8.d0 shift to bits 8:10
bset #SupvrB1t+8.dO set supervisor state bit 
move.w dO.IRQMask(a2) save sr Image

The following example is typical of a serial port device driver read routine. 
For simplicity this example ignores the need to send the XON flow control 
character if XOFF had been sent and the buffer is now at the low water 
mark:

Read tst.w S1gPrc(a2) SS_SS1g request pending?
bne NotRdyErr ..yes; read request not allowed
move sr,-(a7) save current Interrupt mask
move IRQMask(a2),sr mask Interrupts to device level
bsr InBufOut get character from Input buffer
bcc.s Read20 ..got one (1n dO.b)

* The Input buffer was empty. Sleep. waiting for data:
move.w V_BUSY(a2),V_WAKE(a2) set flag and process ID
move (a7)+,sr unmask Interrupts
bsr Sleep sleep
bcs.s ReadEx ..fatal signal received; abort
bra .s Read ..else try again

Read20 move.b V_ERR(a2),dl get error flag
cl r.b V_ERR(a2) reset 1t
move (a7)+.sr unmask Interrupts
tst.b dl any errors?
beq.s ReadEx ..no; carry 1s clear
move.w #E$Read,dl return read error
or1 #Carry,ccr set carry to show error
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ReadEx rts

* Read request made while SS_SS1g request 1s pending:
NotRdyErr move.w #E$NotRdy,dl return "not ready" error 

or1 #Carry,ccr 
rts

The InBufOut subroutine gets a character from the input circular buffer, 
returning it in the dO.b register. If the input buffer is empty, the subroutine 
returns the processor carry flag set.

The Sleep subroutine sleeps indefinitely until woken by a signal, and then 
checks whether a deadly signal has been received by the process, or the 
process has been condemned (sent a "kill" signal). If so, the driver exits 
immediately with the signal code as the error code (or 1 if the process is 
condemned), not waiting to complete the I/O operation. (This would not be 
suitable in an RBF driver, where the operation must be completed or the disk 
filing system may be corrupted.)

Note that prior to OS-9 version 2.4 the P$Signal field of the process 
descriptor contained the oldest pending signal (the next signal to be 
processed). Therefore if a non-deadly signal was received followed by a 
deadly signal the check in the driver would only see the non-deadly signal, 
and not abort. From OS-9 version 2.4 onwards the P$Signal field contains 
the most recently received signal (not yet processed by the user program), so 
by checking this field the driver will see each signal in turn. Also, prior to 
OS-9 version 2.4 only the abort (quit) and interrupt signals (2 and 3) were 
considered deadly. From OS-9 version 2.4 onwards all signal codes below 32 
are considered deadly.

Sleep moveq #0.(10 sleep without timeout
os9 
move.w

FtSleep
P$S1gnal(a4),dl get most recent signal 1n dl.w

beq.s SIeeplO ..none
cmp1,w #S$Deadly.dl deadly signal?
bcs.s SleepEr ..yes; error

SleeplO moveq #0.d0 ensure carry 1s clear
btst #Condemn,P$State(a4) 1s process dead?
beq.s SleepEx ..no; exit with carry clear
moveq #l.dl "unconditional abort’ error

SleepEr or1 #Carry,ccr set carry to show error
SleepEx rts

The corresponding code fragment in the interrupt service routine to wake up 
the waiting driver is the same as for a solicited interrupt. However, while for 
a solicited interrupt device driver it would be an error for an interrupt to 
occur without there being a process to wake up, in the case of unsolicited 
interrupts this is a common occurrence.
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The important point to note in the above read routine example is that the 
processor interrupt mask was set to the interrupt level of the device while 
the check on the input buffer was made, and interrupts were not unmasked 
until a character had been taken from the buffer or the wakeup handshake 
flag V_WAKE had been set. Remember also that the processor automatically 
sets its interrupt mask to the interrupt level of the device during an 
interrupt service routine. The result is that these two code fragments are 
mutually exclusive - neither can asynchronously break into the other - 
permitting an "indivisible" set of operations. This does not preclude a higher 
level interrupt from another device being serviced while either routine is 
executing, but as that interrupt service routine is not communicating with 
this driver the possibility is not relevant. (If the device driver does also 
service a higher level interrupt, critical code fragments should mask 
interrupts to the higher level).

Note that once the V_WAKE flag is set the driver can unmask interrupts 
(indeed, it must unmask interrupts before making the F$Sleep system call). 
If an interrupt comes in after V_WAKE is set but before the driver has gone 
to sleep, the interrupt service routine will still send the signal. Because the 
process is the current process (it is not yet in the sleeping queue), the kernel 
will set the B_WAKEUP bit of the P$SigFlg field of the process descriptor, 
and the subsquent F$Sleep system call will return to the driver without 
sleeping.

Similarly, because the interrupt service routine clears the V_WAKE field 
when sending the signal, on wakeup the device driver will find this field clear 
if it has been sent the signal (although in this example the driver does not 
use this flag, but instead checks the input buffer again). Provided the device 
driver writer takes care to provide such an indivisible handshake between 
the main body of the driver and the interrupt service routine, there is no 
possibility of a timing race condition, and no interrupts will be missed.

The write routine for a serial port device driver is almost identical to the 
read routine, except that the write routine must sleep if the output buffer is 
full when it tries to put a character into the buffer. Also, the write routine 
has the responsibility for starting the "transmit stream" if transmitter 
interrupts had been disabled because the output buffer was empty.

When the interface chip generates a "transmitter ready" interrupt, the 
interrupt service routine checks the output buffer. If the buffer is not empty 
the interrupt service routine takes the next character from the buffer and 
writes it to the transmit register of the chip. The chip will generate another 
interrupt when its transmit register becomes empty again. Thus a continuous 
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stream of interrupts and character transmissions is maintained so long as the 
output buffer is not empty, which will be the case so long as the program 
(and SCF and the driver) provides data faster than the data transmission 
rate of the interface. If the buffer is empty, the interrupt service routine 
must command the chip to disable further "transmitter ready" interrupts, 
and set a "transmitter interrupts disabled" flag in the device static storage. 
Note that at this time the chip has room for at least one character in its 
transmitter register.

Before attempting to put the character in the output buffer (but after 
masking interrupts), the write routine checks whether the buffer is empty 
and transmitter interrupts are disabled (transmitter interrupts could be 
disabled because the "data received" interrupt service routine received the 
XOFF flow control character). If so, it knows the transmit stream has been 
broken, and must be restarted. It does this by writing the character directly 
to the transmit register of the chip (rather than to the output buffer in the 
device static storage), and enabling transmitter interrupts from the chip. It 
then clears the "transmitter interrupts disabled" flag.

Whether the write routine writes the character to the transmit register and 
then enables transmitter interrupts in the chip, or vice versa, depends on the 
behaviour of the transmitter interrupts of the chip. It is more widely 
applicable to enable the interrupts first, and then write the character. This 
will work if the chip generates an interrupt so long as the transmit register is 
empty (the interrupt will be generated, but then cleared when the character 
is written - meanwhile, the write routine has interrupts masked in the 
processor). It will also work if the chip generates an interrupt when the 
transmit becomes empty, provided the transmitter interrupts are enabled at 
that time. Enabling the interrupts before writing the character avoids a 
potential race condition.

12.7.3 Choosing Interrupt Levels

There has frequently been a much confusion over the philosophy which 
should be used to decide what interrupt level to assign to each device. 
However, a little thought will show that the decision can be made very easily. 
The only benefit of assigning a higher level of interrupt to one device than to 
another is that interrupts from the first device will pre-empt the service of 
interrupts for the second, and be accepted by the processor when the device 
driver for the second device has interrupts masked to the level of its device.

As all interrupts must eventually be handled by the processor, the important 
concern is that the interrupt from a device must be handled before the device 
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wishes to generate another interrupt of the same type. For example, if a 
serial port chip generates a "data received" interrupt, it must be serviced - 
and the character read from the chip - before the chip receives another 
character, assuming the chip has only a single level of buffer for received 
characters in addition to its receive shift register. However, if the chip has an 
8 byte FIFO for received characters, it does not matter if the interrupt is not 
serviced before another character is received, provided it is serviced before 8 
characters are received.

One important point is apparent here - solicited interrupts almost never 
need to be on a high level interrupt. Such interrupts are only generated in 
response to a command from the driver to the chip. If the driver takes a long 
time responding to the interrupt, no problem is caused, because the chip 
cannot need to generate another interrupt until the driver issues another 
command. Therefore chips that only generate solicited interrupts can be on a 
low interrupt level - 1 or 2, for example. A high interrupt level is only 
needed if a remote device needs a rapid response. For example, a 
communications protocol may specify a maximum response time.

This only leaves the question of how to select the interrupt levels for devices 
that generate unsolicited interrupts, such as communications ports, the clock 
tick hardware, and some network interfaces. Again, the answer is simple. 
The highest level of interrupt should be assigned to the device that can 
produce the shortest interval from one interrupt to the next. For example, a 
serial port operating at 19200 baud will generate interrupts roughly eveiy 
50Qus, whereas a typical clock tick is 10ms. It follows that unless the serial 
port has a 20 character FIFO (unlikely!), it should have a higher level 
interrupt than the tick hardware. That is to say, it is less important that the 
response to a tick interrupt be delayed by a few microseconds, than that the 
serial port interrupt response be delayed by a similar time.

The only modifying consideration is the seriousness of the loss of an 
interrupt from a particular device. For example, a lost serial port interrupt 
will cause a communications error - hopefully recoverable - while a lost tick 
interrupt will cause an unrecoverable date and time error. However, a system 
that is so heavily loaded with interrupts is probably on the edge of failing in 
the application in any case.

12.8 A SKELETON DEVICE DRIVER

Often, part of the problem in writing a device driver for OS-9 is in knowing 
how to start. To help overcome this difficulty, this section shows the skeleton 
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of a device driver in assembly language. It provides the bones on which a 
device driver that actually controls a hardware interface can be built. Note 
the use of the file 7dd/DEFS/oskdefs.d'. This file contains definitions - such 
as module types - that cannot conveniently be taken from a library, due to 
limitations in the linker on the use of external symbols in arithmetic 
expressions.

* Skeleton device driver
Typ_Lang 
Att_Revs

Edition

set (Dr1vr<<8)+0bjct module type and language
set ((ReEnt+SupStat)<<8)+0 module attributes and

revision
set 1 software edition number
psect skeldrv,Typ_Lang,Att_Revs.Ed111on,0.EntryTabl e
use /dd/DEFS/oskdefs.d

* Static storage definitions (to form the last part of the Device
* Static storage):

sr Image with Interrupts masked 
end of static storage definitions

IRQMask
vsect 
ds .w 
ends

1

* Routine: offset table:
EntryTabl e dc.w Init Initialize

dc.w Read read
dc.w Write write
dc.w GetStat get status
dc.w SetStat set status
dc.w Term termlnate
dc.w 0 (exception handler)

* Initialize
* Passed: (al) = Device Descriptor
* (a2) = Device Static Storage
* (a4) = Process Descriptor of current process
* (a6) = System Globals
* Returns: carry set If error, with error code in dl.w
* May destroy: d0-d7/a0-a6,ccr
Init tst.w dO clear carry - no error

rts

* Terminate
* Passed: (al) = Device Descriptor
* (a2) = Device Static Storage
* (a4) = Process Descriptor of current process
* (a6) = System Globals
* Returns: carry set 1f error, with error code in dl.w
* (kernel Ignores any returned error)
* May destroy: dO-d7/aO-a5,ccr (NOT a6)
Term tst.w dO clear carry - no error

rts
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* Returns: carry set 1f error, with error code 1n dl.w

* Read
* Passed: (al) = Path Descriptor - (NOT SBF)
* (a2) = Device Static Storage
* (a4) = Process Descriptor of current process
* (a6) = System Globals
* RBF only: dO.l = number of sectors to read
* RBF only: d2.1 - LSN of first sector to read
* SBF only: dO.l = number of bytes to read
* SBF only: (aO) ■= buffer to read to
* SBF only: (a3) = drive table

* SCF only: dO.b = character read
* SBF only: dl.l = number of bytes read
* May destroy: d0-d7/a0-a6,ccr
Read tst. w dO clear carry - no error

rts

* Write
* Passed: (al) - Path Descriptor - (NOT SBF)
* (aZ) = Device Static Storage
* (a4) = Process Descriptor of current process
* (a6) = System Globals
★ RBF only: dO.l - number of sectors to write
* RBF only: dZ.l = LSN of first sector to write
★ SCF only: dO.b - character to write
* SBF only: dO.l - number of bytes to write
* SBF only: (aO) = buffer to write from
* SBF only: (a3) - drive table
* Returns: carry set if error, with error code 1n dl.w
* SBF only: dl.l - number of bytes written
* May destroy: d0-d7/a0-a6,ccr
Write tst. w dO clear carry - no error

rts

* Get status
* Passed: 
*

(al) = Path Descriptor
(aZ) = Device Static Storage
(a4) - Process Descriptor of current process
(a6) - System Globals

★ dO.w = function code
* Returns: carry set If error, with error code 1n dl.w

May destroy: d0-d7/a0-a6,ccr
Getstat move.w #E$UnkSvc,dl unknown code 

or1 #Carry.ccr return error 
rts
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* Set status
* Passed: (al) - Path Descriptor
* (a2) - Device Static Storage
* (a4) - Process Descriptor of current process
* (a6) = System Globals
* dO.w = function code
* Returns: carry set 1f error, with error code 1n dl.w
* May destroy: d0-d7/a0-a6,ccr
SetStat move.w #E$UnkSvc,dl unknown code 

ori #Carry,ccr return error 
rts

ends end of code

12.9 CLOCK DRIVERS
Each OS-9 system must have "clock" hardware and a clock driver, to support 
time-sliced multi-tasking, timed sleeps, alarms, and the maintenance of the 
date and time. As a minimum, the clock hardware must have a periodic 
timer, generating interrupts at regular intervals. This is the system "tick" 
interval, usually 10ms. The interval between ticks must be precisely 
constant, as the ticks are used to maintain the system date and time. This 
implies that the timer must be cyclic - there must be no need for software to 
retrigger the timer. Also, the tick period must be such that there are an 
integral number of ticks per second.

The clock hardware may also include a battery-backed "time of day" circuit. 
This is typically a separate chip, maintaining the date and time even when 
the computer is switched off.

It is the job of the clock driver to control this hardware, and to call the 
kernel's tick handler when a tick interrupt occurs. The clock driver is 
different from the OS-9 I/O device drivers. There is no associated device 
descriptor, path descriptor, device static storage, or file manager, and there 
can only be one clock driver in each system. The clock driver does not have a 
routine offset table such as device drivers have. Instead, the execution entry 
offset in the module header (the M$Exec field) points directly to the 
initialization routine of the clock driver. The kernel takes the name of the 
clock driver module from the init configuration module. The clock driver 
name string is pointed to by the offset in the M$Clock field of the init 
module.

The F$STime system call is used to set the date and time. The kernel's 
handler for this function writes the new date and time to the System Globals 
(D Year, D_Month, D Day, D_Second, and D_Julian fields), and then 
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calls the initialization routine of the clock driver. The clock driver must 
ensure that the tick hardware is configured and running, and write the date 
and time to the battery-backed clock chip (if the driver supports one). 
Because the F$STime system call may be made more than once, the driver 
should check whether it has already initialized the tick hardware. If so, it 
should not re-initialize it. The clock driver's initialization routine is called 
with the following parameters:

(a4) = Process Descriptor of calling process
(a5) = Caller's register stack frame
(a6) = System Globals

The initialization routine may destroy any registers except a4, a5, and a6. If 
the routine encounters an error, it should return it in the normal way - the 
carry flag set, and an error code in the dl.w register. When initializing the 
tick hardware, the driver must perform three functions:

a) Install its tick interrupt handler, using the F$IRQ system 
call. As there is no clock device descriptor, the driver must 
use hard-coded values for the interrupt vector and software 
polling priority (and the interrupt level). Although when 
making the call the a2 register must not match that for any 
other device installed on the same vector, this is not normally 
a problem for the clock driver, as the kernel passes a2 
pointing to the module directory entry for the clock driver. 
However, if the clock driver uses a2 before making the 
F$IRQ call, the driver writer must ensure it cannot be equal 
to the device static storage address of any present or 
subsequently installed device. Setting a2 to zero for the 
F$IRQ system call is therefore recommended by Microware 
as being safe and consistent.

b) Initialize the D TckSec (ticks per second) field of the System 
Globals. It is the responsibility of the clock driver to 
determine the number of ticks the tick hardware will 
generate each second. This keeps the kernel independent of 
the tick hardware. Any tick rate is permissible, provided that 
there is an integral number of ticks per second. 10ms is a 
typical period, giving 100 ticks per second. Too small a tick 
interval will cause tick interrupts and process scheduling to 
consume too large a fraction of the processor's time. Too large 
a tick interval may delay the real-time response of processes 
in a multi-tasking application, and may give too coarse a 
resolution for timed sleeps and alarms.
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c) Initialize the tick hardware, including enabling the tick 
interrupts, provided the hardware has not been initialized by 
a previous call to the clock driver's initialization routine.

Because the driver must set the D TckSec field of the System Globals, and 
the kernel initializes this field to zero, the driver can use this field to check 
whether its initialization routine has been called before - D TckSec will be 
zero if the initialization routine is being called for the first time.

Having initialized the tick hardware if necessary, the clock driver must write 
the new date and time to the battery-backed clock chip, if one is supported. 
The time and date are in the caller's register stack frame. R$d0(a5) gives the 
time as OOHHMMSS, and R$dl(a5) gives the date as YYYYMMDD (as 
required by the F$STime system call).

However, if the month and day are zero, this is a request to read the date 
and time from the battery-backed clock chip, if one is supported. Instead of 
writing to the chip, the driver must read the current date and time from the 
chip, and set the D Year, D Month, D Day, D Second, and D Julian 
fields of the System Globals. The F$Julian and F$Gregor system calls can 
be used to translate between Gregorian and Julian date and time formats. 
Note that the D_Second field is the number of seconds left until midnight, 
rather than seconds since midnight.

The kernel makes the F$STime system call with a date of zero as part of its 
coldstart procedure (after the calls to open the default paths, change the 
directories to the default mass storage device, and install the kernel 
customization modules, if any), unless bit 5 is set in the first compatibility 
byte of the init module. In this way the kernel starts the clock, and reads the 
current date and time if a battery-backed clock chip is supported by the 
clock driver.

The interrupt service routine of the clock driver is usually straightforward. 
As with any interrupt service routine, it must determine that the interrupt 
was generated by the tick hardware, and return to the kernel with the carry 
flag set if not. Otherwise it must clear the tick interrupt in the tick hardware 
(if it is not automatically cleared by the interrupt acknowledge cycle), and 
call the kernel's tick handler. The address of the kernel's tick handler is in 
the D_Clock field of the System Globals:

movea.l 0_Clock(a6),a0 get tick handler address 
jmp (aO) ..go to it
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Just like any other interrupt service routine, the clock driver interrupt 
service routine may only destroy the dO, dl, aO, a2, a3, and a6 registers 
(unless bit 0 of the first compatibility byte in the init module is set).

In most systems the clock tick interrupts are not produced by the same chip 
that provides the battery-backed date and time facility, but by a separate 
timer chip. To simplify the job of the clock device driver writer, from OS-9 
version 2.3 onwards Microware's example clock drivers are separated each 
into two source files. One file contains the routines for managing the clock 
tick chip, and the other contains the routines for managing the date and time 
chip. The files have a common interface, so the clock driver can be made for 
any combination of the two chips.

311



DEVICE DRIVERS

312


	CHAPTER 12
DEVICE DRIVERS
	12.1 THE FUNCTION OF A DEVICE DRIVER
	12.2 DEVICE STATIC STORAGE
	12.3 PATH DESCRIPTOR
	12.3.1 RBF Path Descriptor
	12.3.2 SCF Path Descriptor

	12.4 SYMBOLIC DEFINITIONS
	12.5 REGISTER USAGE
	12.6 DEVICE DRIVER ROUTINES
	12.6.1 Initialize
	12.6.2 Terminate
	12.6.3 Read
	12.6.4 Write
	12.6.5 Get Status and Set Status

	12.7 INTERRUPTS
	12.7.1 Solicited Interrupts
	12.7.2 Unsolicited Interrupts
	12.7.3 Choosing Interrupt Levels

	12.8 A SKELETON DEVICE DRIVER
	12.9 CLOCK DRIVERS


