
OS-9 SYSTEM CALLS

CHAPTER 11

OS-9 SYSTEM CALLS

All operating system functions are accessed by means of system
calls. A system call is essentially a subroutine that is executed in
system state. It is important to appreciate that the system call is
effectively a subroutine call by the calling program, so that all

operations performed by the system call handler function are performed on
behalf of the calling process. For example, if a system call function goes to
sleep, it is the calling process that is sleeping. Similarly, the calling program
will not continue execution until the system call is completed, just as would
be the case with a simple subroutine call.

Conversely, the operating system does nothing without a system call being
made by a program. The only time that operating system code executes other
than when servicing a system call is when servicing an interrupt.

11.1 THE SYSTEM CALL MECHANISM
OS-9 system calls use the 68000 family trap #0 instruction. This instruction
- an extension of the software interrupt of earlier processors - causes a
processor exception. The processor saves the status register and program
counter, switches to supervisor state, and continues execution at the address
indicated by the appropriate exception vector. There are 16 trap
instructions, trap #0 to trap #15. OS-9 uses trap #0 for system calls.

The required system function is indicated by the word following the trap #0
instruction in the program. The kernel reads this word to determine the
required function, using it as an index into the appropriate Dispatch Table
(System or User) depending on whether the caller was in system or user
state. The kernel then adds two to the saved program counter, so that

233

OS-9 SYSTEM CALLS

program execution will continue with the instruction following the function
code word.

The OS-9 assemblers r68 and r68020 provide a built-in macro os9 to
generate the trap #0 instruction and the function code word in one
statement. The function codes are defined symbolically in the file
'DEFS/funcs.a', and so are available as external references resolved by the
library 'LIB/sys.1'. For example, the "fork a process" system call has function
code 3, defined symbolically as F$Fork. So the assembly language statement:

os9 F$Fork

is equivalent to the statements:
trap #0
dc.w FJFork

or:
trap #0
dc.w 3

The trap instructions, as with any exception, put the processor in supervisor
state, which is the state required by the operating system. Note that the
68000 family processors can only go from user state to supervisor state as the
result of an exception.

11.2 SYSTEM CALL PARAMETERS
The trap #0 exception handler in the kernel saves all of the caller's registers
on the system stack13 as a "stack frame", and retrieves them before returning
to the caller. Therefore the caller's registers are not modified unless
explicitly stated in the documentation, because the system call function must
actively change the stack frame to affect the caller's registers.

1 3 The system stack is in the second half of the calling process's process descriptor, except
during interrupt processing.

OS-9 was originally written exclusively in assembly language (although now
some parts are written in C), with speed of execution in mind. Therefore all
parameters to system calls, and all returned values, are in processor
registers, or are pointed to by processor registers. Which registers hold which
values is determined by the specification for the particular system call.

The error returning convention is the same for all system calls, and for all
communications between operating system components. The kernel returns
an error to the calling process in the caller's registers - the "carry" flag of the
caller's condition codes register (ccr) is set, and the error code is placed in

234

OS-9 SYSTEM CALLS

the low word (bits 0-15) of the dl register. If there is no error, the carry flag
is cleared, and the dl register is not modified.

The passing of parameters and results in the processor registers and the
setting of the carry flag to indicate an error are techniques that are not
directly compatible with C. Therefore it is necessary to provide small library
functions written in assembly language that can be called from C programs.
Such functions translate the C parameter passing format to that required by
the system call, make the system call, and then convert the returned values
and error indication to a form compatible with C. This topic is covered in
detail in the chapter on Microware C and Assembly Language.

11.3 CUSTOM SYSTEM CALLS

System state modules can add new system calls, or replace existing ones,
using the F$SSvc system call. This makes OS-9 almost infinitely
customizable. Note that this is a privileged system call - normal user state
programs cannot add or modify system calls.

On coldstart the kernel installs its own system call handlers in the Dispatch
Tables, using the F$SSvc system call routine. The kernel then tries to link
to one or more "kernel customization modules", whose names are given in the
init module. If found, the kernel calls their entry points, giving them a
chance to allocate memory, set up data structures, and install system calls
using F$SSvc. The system programmer can therefore add or modify system
calls without altering the kernel.

New system calls can make themselves extensions to existing system calls by
saving the address of the existing routine (from the Dispatch Tables) before
installing the new routine. When called, the new routine performs its
additional function, and then jumps to the old routine (or calls the old
routine first, as appropriate).

The F$SSvc system call optionally instructs the kernel to save a memory
address in the Dispatch Table with each system call handler address. A
kernel customization module can include static storage definitions, in the
same way as a program. If it does, the M$Mem field of its module header
gives the total size of the required static storage. Before calling the
initialization routine of a kernel customization module, the kernel allocates
an area of memory of the required size, and passes its address to the
customization module's initialization routine in the a3 register.

235

OS-9 SYSTEM CALLS

The F$SSvc system call expects the "memory address" parameter to be in
the a3 register, so when the initialization routine makes this system call to
install a new or replacement system call, the module's static storage pointer
is automatically saved in the Dispatch Table. When the kernel calls the new
system call handler routine, it passes the saved memory address in the a3
register, permitting the system call handler to access the static storage using
the symbolic names with which the static storage was defined. This
effectively allows the System Globals memory structure to be extended as
needed.

11.4 USER AND SYSTEM STATE CALLS
There are two Dispatch Tables - a user table and a system table. When a
system call is made the kernel uses one or the other table to fetch the
appropriate routine address (indexed by the system call code). The choice is
made on the basis of the processor state of the caller, determined by
inspecting the saved status register on the stack. Each table is 512 long
words. The first group of 256 entries are the addresses of the system call
handler functions, indexed by the system call code. The second group of 256
entries are the memory addresses appropriate to the system calls (set by the
F$SSvc call), also indexed by the system call code.

The F$SSvc system call takes a flag with each call being installed indicating
whether the routine address should be put in both dispatch tables, or in the
System Dispatch Table only (for privileged calls). A function can be made to
behave differently depending on whether the call was made from user or
system state by installing the user state version of the routine in both tables,
and then the system state version of the routine in the System table only.

This is commonly done by the kernel for I/O system calls. A user state call
has its path number translated through the path number conversion table in
its process descriptor, to give the system path number identifying the
appropriate path descriptor. A system state call passes the system path
number directly.

11.5 THE SYSTEM CALLS
Each system call provided by OS-9 version 2.4 is listed below, with its
function code and a brief description of its purpose. Many of the function
codes are historical, and are no longer used. Others have been defined for
future use, or for special applications. These unimplemented codes are shown
with the description in italics. Privileged system calls are shown with a ®

236

OS-9 SYSTEM CALLS

symbol preceding the description. System calls that only apply if the System
Security Module is in use are shown with "SSM" preceding the description.

The I/O system calls are described in detail in the section on the I/O System.

Some system calls were created by Microware specifically for use in their
utilities, and are not documented in the OS-9 Technical Manual, while other
system calls were not documented until recently. These calls are shown with
a B after the description, and are briefly described in the sections following
the table below.

Code Name Description
$000 F$L1nk Link to a module in memory.
$001 F$Load Read a file of one or more modules into memory and install the

modules as a group in the module directory. S
$002 F$UnL1nk Unlink a module, specifying the module address. From OS-9

version 2.3 onwards, if the call is from user state and the SSM is
in use, the module header must be in the caller’s memory map. If
the unlink reduces the link count to zero, (or -1 for a sticky
module), the kernel deletes the module from the module directory,
subject to certain checks that the module is not in use. A module
whose type code is greater than 12 is assumed to be an I/O
module, and the kernel makes an F$IODel system call to check
that it is not in use by an I/O sub-system. From OS-9 version
2.4.3 (released in 1992), the kernel checks each process descriptor
to ensure that the module is not a primary program module or an
installed trap handler.

$003 F$Fork Start a process, specifying a program module to link to or file
name to load. The kernel first attempts to link to a module of the
given name. If that fails, the kernel attempts to load from a file of
the given name, relative to the execution directory. If this
succeeds, the kernel will execute the module loaded (irrespective
of the name). If the file contains more than one module, the first
module is executed. The link and load requests are executed on
behalf of the new process, not the parent process.

$004 F$Wait Wait for any child of this process to die.
$005 F$Cha1n Convert this process to executing a new program module.
$006 F$Exit Terminate this process.
$007 F$Mem Change the size of the primary data area (initial static storage and

stack) of this process (not recommended for new applications).
This call will fail if it attempts to expand the static storage, and
insufficient contiguous free memory is available above the current
static storage. The F$Fork system call uses this system call to
allocate the primary data area for the process. Memory is allocated
from low memory upwards (contrast F$SRqMem).

$008 F$Send Send a signal to a process.

237

OS-9 SYSTEM CALLS

$009 F$Icpt Install or replace the signal handler function for this process. A
handler address of zero cancels any currently installed signal
handler for the process.

$00A F$Sleep Put this process to sleep for a time, or until woken by a signal. A
request for a sleep of one tick immediately re-inserts the process
in the active queue, causing a reschedule. A request for a sleep of
n ticks will sleep until n-1 tick interrupts are received.

$00B F$SSpd (Suspend Process).

$00C F$ ID Return the process ID of this process.
$000 F$SPr1or Set the execution priority of a process.
$00E F$STrap Install a handler function for "hardware" exceptions (bus error,

address error, illegal instruction, and so on).
$00F F$PErr Print an error number, with an optional description string

searched for in a text file.
$010 F$PrsNam Parse the name of a module or file.
$011 F$CmpNam Compare a match string with a file or module name, including

wild card characters.
$012 F$SchB1t Search a bit map for a free (clear) field.
$013 F$A11 Bit Allocate (set) a field in a bit map.
$014 F$0elB1t De-allocate (clear) a field in a bit map.
$015 F$T1me Get the current data and time.
$016 F$ST1me Set a new date and time, or read the date and time from a

battery-backed clock (by specifying a date of zero).
$017 F$CRC Generate or check the module CRC over part or all of a module

(or other memory area).
$018 F$GPrDsc Get a copy of the process descriptor of a process.
$019 F$GBlkMp Get information about the free memory list. S
$01A F$GModDr Get a copy of the module directory.
$01B F$CpyMem Copy from an absolute memory address to the caller's buffer (the

process ID parameter mentioned in the OS-9 Technical Manual is
not used).

$01C F$SUser Change the user and group numbers of this process. Only
permitted in two cases. Firstly, if the caller is a super user (group
0). Or secondly, if the owner of the primary module (in the
M$Owner field of the program module header) is a super user
and was at the time of forking (the kernel compares the
M$Owner field with the P$MOwn field of the process
descriptor), and the new user and group are to be the same as the
module owner. Note: prior to OS-9 version 2.3 the check that
M$Owner had not changed was omitted.

$010 F$UnLoad Unlink a module by name.

238

OS-9 SYSTEM CALLS

$01E F$RTE Exit a signal handler function (this call must be used to ensure
that all pending signals are processed).

$01F F$GPrDBT Get a copy of the process descriptor table.
$020 F$Julian Convert a date and time in Gregorian format to Julian format.
$021 F$TL1nk Link to a trap handler module and install it to handle future trap

#n instructions from this process.
$022 F$DFork Fork a process to be debugged.

$023 F$DExec Execute one or more instructions of a child process being
debugged.

$024 F$DEx1t Terminate a child process being debugged.
$025 F$0atMod Create a data module (or other module type) in memory. B
$025 F$SetCRC Correct the header parity and CRC of a module in memory.
$027 F$SetSys Read or write a field of the System Globals.
$028 F$SRqMem Allocate memory by priority only (no regard for colour). This call

will not allocate memory of priority zero.
$029 F$SRtMem De-allocate memory (return it to the free pool).
$02A F$IRQ S Install an interrupt handler function in the interrupt polling

table.
$02B F$I0Qu S I/O queue this process on another process (that is using an I/O

resource). The queue is ordered by the scheduling constants of the
processes at the time they were placed in the queue. A process
being added to the queue is placed later in the queue than other
processes in the queue with equal or greater scheduling constants.

$02C F$AProc S Put a process in the active queue.
$020 F$NProc S Make the first process in the active queue the current process.
$02E F$VModul S Validate a module in memory and install it in the module

directory.
$02F F$F1ndPD S Get the address of a path or process descriptor, given the path

number or process ID and the base address of the path or process
descriptor table.

$030 F$A11PD S Allocate a new path or process descriptor, given the base
address of the path or process descriptor table. Searches the table
for a free entiy (which determines the new path number or
process ID), allocates the required memory and clears it, and sets
the address in the table. Then sets the first word of the allocated
memory to the path number or process ID, and returns the path
number or process ID and the address of the allocated memoiy.
The first two words of the table give information about the
memory structures. The first word is the current maximum path
number or process ID permitted (equal to the size of the table in
long words, minus one). The second word is the size of each
structure (path or process descriptor).

239

OS-9 SYSTEM CALLS

$031 F$RetPD S De-allocate a path or process descriptor, given a path number
or process ID in dO and the base address of the path or process
descriptor table in aO. Clears the table entry for this descriptor,
and de-allocates the memory.

$032 F$SSvc S Install one or more system call handler routines.
$033 F$lODel £ Check unlinking of an I/O module (file manager, device driver or

device descriptor). ®
$037 F$GProcP £ Get the address of a process descriptor given a process ID. ffl
$038 F$Move £ Optimized memory copy (also takes into account any MMU

restrictions).
$039 F$A11RAM (Allocate RAM blocks).

$03A F$Permi t SSM - Add memory area to process's memory map (permits the
process to access the memory area). 0

$03B F$Protect SSM - Remove memory area from process's memory map. B
$03C F$SetImg (Set Process DAT Image).

$030 F$FreeLB (Get Free Low Block)

$03E F$FreeHB (Get Free High Block)

$03F F$AllTsk £ SSM - Ensure the MMU is set up for this process. If the SSM is
not installed, this call is not privileged - it does nothing, and
returns no error. E

$040 F$DelTsk £ SSM - De-allocate the task number for this process. If the SSM
is not installed, this call is not privileged - it does nothing, and
returns no error. 1

$041 F$SetTsk (Set Process Task DAT registers).

$042 F$ResTsk (Reserve Task number).

$043 F$RelTsk (Release Task number).

$044 F$DATLog (Convert DAT Block/Offset to Logical).

$045 F$DATTmp (Make temporary DAT image).

$046 F$LDAXY (Load A [X,[Y]]).

$047 F$LOAXYP (Load A [X+,[Y]]).

$048 F$LDDDXY (Load D [D+X,[Y]]).

$049 F$LOABX (Load A from 0,X in task B).

$04A F$STABX (Store A at 0,X in task B).

$04B F$A11 Pre & Allocate a new process descriptor - calls F$A11PD, then sets the
current date and time in the P$DatBeg and P$TimBeg fields of
the process descriptor.

$04C F$DelPre £ De-allocate a process descriptor, given the process ID in the dO
register. Calls F$RetPD.

$040 F$ELink (Link using Module Directory Entry).

240

OS-9 SYSTEM CALLS

$04E F$FModul S Find a module directory entry. B
$04F F$MapBlk (Map Specific Block).

$050 F$ClrBlk (Clear Specific Block).

$051 F$DelRAM (De-allocate RAM blocks).

$052 F$SysDbg Invoke system level debugger. ®
$053 F$Event Create, link to, unlink from, delete, change, inspect, or wait for an

OS-9 event.
$054 F$Gregor Convert a date and time in Julian format to Gregorian format. ■
$055 F$SysID Get the system identification information. B
$056 F$Alarm Set up to be sent a signal after a timed interval, or periodically. In

system state, install a handler function to be called after a timed
interval, or periodically.

$057 F$S1gMask Increment, decrement, or clear the signal mask for this process.
The dO register must be zero. The dl register must be -1 (to
decrement the signal mask), or 0 (to clear the signal mask), or 1
(to increment the signal mask).

$058 F$ChkMem SSM - check that a memory area is within this process's memory
map. If "write" permission is requested, the SSM checks that the
memory is not write protected from this process. Otherwise, it
checks that the process can read and execute the memory. In user
state, or if SSM is not used, this cedi just reads the first byte of the
memory area (generating a bus error if the memory is not
accessible). ®

$059 F$UAcct For a user accounting module. The kernel makes this call when a
process is forked, chained, or terminated. A kernel customization
module can install a handler for this call, and maintain user
accounting information.

$05A F$CCtl Enable, disable, or flush the processor program and/or data
caches.

$05B F$GSPUMp SSM - get a copy of the memory map of a process, B
$05C F$SRqCMem Allocate memoiy of a particular colour. This call will allocate

memory of priority zero if no other memory of that colour is
available.

$050 F$P0SK (Execute service request).

$05E F$Pan1c Panic warning. The kernel has no handler for this call, but makes
this cedi if all processes have been terminated. Custom modules
could make this call under other fatal conditions, such as power
failure. A watchdog module could install a handler for this call to
handle these situations gracefully. Normally this call would be
installed for system state use only.

$05F F$MBuf (Memory buffer manager). This system call is implemented as part
of the Internet Support Package (ISP).

241

OS-9 SYSTEM CALLS

$060 F$Trans Translate a memory address as seen by the CPU into the address
to be used by an alternate bus master, using the address
translation offset given in the memory list in the init
configuration module.

$080 I$Attach Ensure an I/O device is initialized.
$081 I$Detach Terminate usage of an I/O device.
$082 I$Dup Get another local path number for an open path.
$083 I$Create Open a path and create a file.
$084 I$0pen Open a path to an existing file or device.
$085 I$MakD1r Create a directory file.
$086 I$ChgDir Change the current data and/or execution directory for this

process.
$087 I$Delete Delete a file.
$088 I$Seek Change the current file pointer on a path.
$089 I$Read Read from a path without data editing.
$08A I$Write Write to a path without data editing.
$08B I$ReadLn Read from a path, terminating on [CR], allowing data editing.
$08C I$Wr1tLn Write to a path, terminating on [CR], allowing data editing.
$08D I$GetStt Get information about a path, file, or device.
$08E I$SetStt Modify information or operation, or request special action, of a

path, file, or device.
$08F I$Close Close a path.
$092 I$SGetSt Get a copy of the device name or path descriptor options section of

an open path using a system path number.

11.5.1 F$AllTsk System Call

The kernel makes this system call just before starting or restarting a process
in user state. It is a request to the SSM to ensure the MMU is correctly set up
for the current process. Some MMUs can store multiple process memory
maps simultaneously. The current map is selected by writing a number to the
MMU. Under OS-9 this number is known as a task number.

If the MMU can store multiple maps the SSM first checks to see whether the
map for this process is already in the MMU - that is, a task number is
allocated to the process. In this case the SSM need only write the task
number to the appropriate MMU register to select the map for the current
process. The SSM stores the process's task number in the P$Task field of the
process descriptor. (If the process's map is not currently in the MMU the
SSM sets P$Task to some invalid value as an indication of this.) If no task

242

OS-9 SYSTEM CALLS

number is currently allocated to the current process the SSM tries to find an
unallocated task number for it. Otherwise it must take a task number from
another process.

In the case that the MMU cannot store multiple maps the SSM will keep a
record of the process descriptor address of the process whose map is
currently in the MMU, so that it does not unnecessarily rewrite the map in
the MMU.

The SSM will therefore have decided whether the memory map for the
current process must be written to the MMU. Some MMUs can read the
processor's memory, so that they read the map themselves as necessary. For
these MMUs (such as the MMUs in the 68030 and 68040) the SSM only
needs to write the root address of the process's memory map to the MMU
register. Otherwise the SSM must copy the process's memory map to the
MMU internal memory.

The SSM will also need to copy the process's memory map to the MMU
internal memory if the process's memory map has changed - the map
previously stored in the MMU is "stale". The SSM F$Protect and F$Permit
system calls set bit 4 of the P$State field in the process's process descriptor
to indicate that the memory map of the process has been changed. If the
MMU uses internal memory to store the map (rather than directly accessing
the processor's memory), the F$AllTsk system call must update the map
stored in the MMU if this bit is set, even if the map had been previously
written to the MMU. The SSM then clears the bit flag, to indicate the map in
the MMU is now up to date.

11.5.2 F$CCtl System Call

The higher members of the 68000 family have on-chip memory caches. The
68020 has an instruction cache, while the 68030 and 68040 have separate
instruction and data caches. In addition, some processor boards have off-chip
caches. In order to be able to support such boards, Microware has not
included control of the caches in the kernel. Instead, the caches are
controlled by the syscache kernel customization module, which installs the
F$CCtl system call (the kernel's default handler for this system call does
nothing, and returns no error). The system call allows the instruction and
data caches to be separately enabled, disabled, and flushed (any dirty data is
written to main memory, and the current cache contents are forgotten). The
kernel uses this system call, for example to disable the data caches during I/O
calls.

243

OS-9 SYSTEM CALLS

The parameter passed to the system call is not an image of the processor's
cacr (cache control) register. Instead, it is a long word of six bit flags, each
requesting the instruction or data caches to be enabled, disabled, or flushed.
If an undefined bit is set, or a call is made from user state requesting action
other than flushing one or both cache sets and the caller is not a super user,
a "parameter" error (E$Param) is returned. It is not an error to request an
action that is not supported by the hardware (for example, enabling the data
cache on a 68020).

This system call supports nested requests to disable the instruction or data
caches, which are enabled on coldstart. If a request is made to disable the
instruction or data caches, the D_DisInst or D_DisData field respectively of
the System Globals is incremented, and the appropriate caches are disabled.
If a request is made to enable a set of caches, the appropriate field of the
System Globals is decremented (unless it is already zero). If it is now zero,
the corresponding caches are enabled, otherwise they are left disabled (and
the flag bit in the parameter is cleared). If the parameter contains flags
requesting that a cache set be both enabled and disabled, the request to
enable the cache takes precedence, and the request to disable the cache is
ignored. If the parameter has no bits set this is taken to be a request to flush
all the caches.

Note that the current state of the cache control is not maintained separately
for each process. Therefore if a process disables caching it does so for all
processes. The most recent flag settings are saved in the D_CachMode field
of the System Globals. The parameter passed to the system call is:

Regi ster Si ze Description
dO 1 Pattern of bit flags.

The bit flags are defined as assembly language symbols in the file
'DEFS/process.a'. They are:

Bit Number Name Description
0 b_endata Enable the data cache(s).
1 b_d1sdata Disable the data cache(s).
2 b_fldata Flush the data cache(s).
4 b_en1nst Enable the instruction cache(s).
5 b_d1s1nst Disable the instruction cache(s).
6 b_f11nst Flush the instruction cache(s).

244

OS-9 SYSTEM CALLS

The example below shows an assembly language function to make this
system call, and a C call to it requesting that the data caches be disabled:

void d1s_data_cache()
{

cache_ctl(0x02);
*/

/* disable the data cache(s) */

/* set bit 1 to disable data cache(s)

#asm
cache_ctl: os9

rts
#endasm

FtCCtl the parameter is already 1n dO.l

11.5.3 F$ChkMem System Call

This system call checks whether a process has permission to access a memory
area, by searching the SSM memory map of the process. The parameters to
the call are:

Register Size

dO 1

dl b

a? 1

Description
Size of the memory area.
Access permissions requested - read, write, execute (same format as
disk file modes byte).
Address of the memory area.

If the SSM is not used (and so has not installed a handler for this system
call), the kernel's default handler simply reads the first byte of the memory
area. This will generate a bus error if the memory is not accessible, or does
not exist.

The kernel uses this system call whenever a system call made from user state
passes a pointer to a memory area for the system call to read or write - for
example, an I/O "read" (I$Read) request.

11.5.4 F$DatMod System Call

This system call creates a module in memory. Prior to OS-9 version 2.3 only
a data module could be created, and the use of coloured memory was not
possible. From OS-9 version 2.3 onwards an extension to the system call
allows the module type and language to be specified explicitly, and a memory
colour to be specified. These two extra parameters are used only if bit 15 of
the d2 register (module permissions) is set, otherwise the system call
assumes a type of "data", a language code of zero, and a colour of zero
(general system memory). The parameters passed to the call are:

245

OS-9 SYSTEM CALLS

Register Size Description
dO 1 Size of the body of the module desired (excluding the header, CRC,

and name string).
dl w Module attributes and revision number.
dZ w Module access permissions. Also, if bit 15 is clear, registers d3 and d4

are ignored.
d3 w Module type and language.
d4 b Memory colour to use (zero means general system memory).

aO 1 Address of the name of the module to create.

The kernel allocates memory for the module, builds the module header,
clears out the module body, sets the module CRC, and installs the module in
the module directory. The "execution offset" field (M$Exec) of the module
header gives the offset from the start of the module header to the module
body - the memory for use by the program. The values returned are:

Reqister Si ze Description
dO w Module type and language.
dl w Module attributes and revision number.
aO 1 Caller's register updated past name string.
al 1 Address of module body ("execution entry").
aZ 1 Address of module header.

11.5.5 F$DelTsk System Call

The kernel makes this system call when terminating a process. It indicates to
the SSM that the task number (if any) which is allocated to the process can
be released for use by another process. Or, if the MMU can only store one
map, that the SSM should forget that the MMU contains the map for this
process (in case the process descriptor memory is reused for another process).
The SSM also de-allocates any remaining memory that it had allocated for
the management of this process's memory map.

11.5.6 F$FModul System Call

The F$Link system call uses this function to locate a module in the module
directory, given the module name, type, and language. The parameters to the
call are:

246

OS-9 SYSTEM CALLS

Regt ster

dO

aO

Si ze

w

1

Description
Module type (high byte) and language (low byte) (or zero to ignore
type or language).
Address of the module name string.

This system calls searches the module directory for the desired modules, and
returns:

Register Si ze Description
dO w Actual module type and language.
dl w Module attributes (high byte) and revision number (low byte).
aO 1 Updated past the module name.
a2 1 Address of the module directory entry.

11.5.7 F$GBlkMp System Call

This system call returns information about the free memory areas on the
system. The parameters passed to the call are:

Reqi ster S1 ze Description
dO 1 Memory areas whose start address is below this value are not included

in the returned segment list (but are included in the segment count
and free memory total).

dl 1 Size of the caller's buffer to contain the returned segment list (in
bytes).

aO 1 Address of the caller's buffer.

The system call routine scans the free memory lists, counting the number of
separate segments of memory that are free in the system, and totalling their
size. For each such segment whose start address is above the specified
minimum passed in the dO register, the start address and size are written to
the buffer (as long words, in that order), until the buffer is exhausted. If the
buffer is not exhausted when all segments have been scanned, the next entry
in the buffer is cleared to zeros (two long words).

If a segment lies in a memory area that is not designated as "user" memory in
the coloured memory list in the init configuration module, the segment is
not included in the totals or in the table. The values returned from the call
are:

247

OS-9 SYSTEM CALLS

Regi ster
dO

Si ze Description
1 System minimum allocatable block size, copied from the D BlkSiz

field of the System Globals.
dl 1 Number of separate free segments of memory found.
d2 1 Total amount of RAM found at startup, copied from the D TotRAM

field of the Systems Globals.
d3 1 Total of free user memory at present.

11.5.8 F$GProcP System Call

This system call returns the address of a process descriptor, given the process
ID. The parameters passed to the call are:

Register Size Description
dO w The process ID.

The values returned from the call are:

Regi ster Si ze Description
al 1 Address of the process descriptor.

11.5.9 F$Gregor System Call

This is the complement to the F$Julian system call. It converts a Julian
date and time to Gregorian format. The parameters to the system call are:

Register Si ze Description
dO 1 Julian time,
dl 1 Julian date.

The system call returns:

Regi ster Size
dO 1
dl 1

Description
"Gregorian" time.
Gregorian date.

A Julian date is simply the number of days from a reference date. A Julian
date of zero corresponds to a Gregorian date of 2nd January, in the year
-4712. The Gregorian date of the 1st January, 1900, corresponds to a Julian
date of 2415020. A Julian time is simply the number of seconds since
midnight. While Gregorian dates and times are more natural to humans, the

248

OS-9 SYSTEM CALLS

Julian equivalents are easier to manipulate numerically. Therefore OS-9
provides system calls to translate between the two representations.

Under OS-9 Gregorian dates are held within a single long word, with bits
16:31 containing the year (since 0 AD - for example, 1992), bits 8:15
containing the month, and bits 0:7 containing the day of the month. This is
often represented as YYYYMMDD. Similarly, "Gregorian" times are held in a
single long word, with bits 16:23 containing the hour (24 hour clock), bits
8:15 containing the minute, and bits 0:7 containing the second. This is often
represented as 00HHMMSS.

11.5.10 F$GSPUMp System Call

This system call returns a generalized representation of the memory map of
a process. The SSM converts its memory map for the process into a standard
table form in the caller's buffer. The table is an array of word values, one for
each memory block in the address space of the processor, where the block
size is the System Minimum Allocatable Block Size (D BlkSiz in the System
Globals) - the block size supported by the MMU. A typical block size is 4k
bytes. For a processor with a 32 bit address bus (as the 68000 family has) - a
4 Gigabyte address space - this would give a table 2M bytes in size!

To avoid the need for such a large buffer, Microware have taken into account
that in reality most systems have all their user memory low down in the
address space. The System Globals field D AddrLim contains the address of
the highest memory location (both RAM and ROM). The caller can use this
field, and the D_BlkSiz field, to determine the size of table to allocate. In
any case, the SSM will not return information for address space blocks above
this limit.

Many systems have the RAM low down in the address space, and the ROM
high up in the address space. This can result in a very large desired table
size. The calling program may decide that it does not need the mapping
information for the ROM areas. The memory list in the init module can be
searched to determine the actual extent of the RAM space on the system.

The table is therefore a representation of the address space of the processor,
or a part of it starting at address zero. For example, if the system has 4M
bytes of RAM starting at address zero, and the System Minimum Allocatable
Block Size is 4k bytes, the table requires 1024 word entries (2048 bytes). For
each block of 4 kbytes, starting at address zero, the SSM will build a table
entry with the following format:

249

OS-9 SYSTEM CALLS

High byte: Access permissions

Bit Permission if set
0 Read
1 Write
2 Execute

Low byte: Use count.

If the block is not in the memory map of the designated process, the entry is
set to zero. The SSM also returns the System Minimum Allocatable Block
Size (a copy of the value in DBlkSiz). The parameters to the system call
are:

Register Size Description
dO w Process ID of the process whose memory map is desired.
d2 1 Size of the buffer for the table (in bytes).
aO 1 Address of the buffer for the table.

The system call returns the following values:

Regi ster Si ze Description
dO 1 System Minimum Allocatable Block Size.
d2 1 Size of the table (in bytes) - equal to the buffer size, unless limited by

DAddrLim.

11.5.11 F$IODel System Call

This system call checks that a module is not in use by any device table entry.
The kernel makes this call internally whenever a file manager, device driver,
or device descriptor module is unlinked, reducing the link count to zero. If
the module is is in use by a device table entry, the kernel leaves the module's
link count at one, and returns an error number 209 (E$ModBsy). The
parameters to the call are:

Register Si ze Description
aO 1 Address of the module to check.

11.5.12 F$Load System Call

This system call reads a file containing one or modules, allocating memory
for the modules, and installing them as a module group in the module

250

OS-9 SYSTEM CALLS

directory. If the "read" bit is set in the file access modes parameter, and the
"execute" bit is not set, the file is opened relative to the process's current data
directory. Otherwise it is opened relative to the process's current execution
directory. Prior to OS-9 version 2.3 it was not possible to specify the colour
of the memory to load the modules into. From OS-9 version 2.3 onwards an
additional parameter giving an explicit memory colour is taken if bit 7 of the
dO register (the file access modes) is set, otherwise general system memory is
used. The parameters passed to the call are:

The values returned are:

Register Size Description
dO b File access modes. Also, if bit 7 is clear, register dl is ignored.
dl b Memory colour to use (zero means general system memory).
aO 1 Address of pathlist of file to load from.

a 2 1 Address of module header.

Register Si ze Description
dO w Module type and language.
dl w Module attributes and revision number.
aO 1 Caller's register updated past pathlist string.
al 1 Address of program start ("execution entry").

If the file contains more than one module, the returned values are for the
first module in the file. The link count of the first (or only) module is set to
one. The link counts of any other modules in the file are set to zero. See the
chapter on OS-9 Memory, Modules, and Processes for a description of
module groups.

11.5.13 F$Permit System Call

If the SSM is in use, a process cannot normally access memory other than
memory allocated to it, or modules it has linked to. An attempted illegal
access will fail (a "write" will not affect the destination memory), and a bus
error exception will be generated. However, in some applications it is
necessary for a program to access other areas of memory. This system call
allows a process to gain access to any memory area. The F$Permit system
call is also used internally by the kernel whenever it wishes to add a memory
area to a process's memory map - for example, when a process allocates
memory, or links to a module.

251

OS-9 SYSTEM CALLS

As with other SSM system calls, the functionality of this call depends on the
implementation within the SSM. The description here is of the functionality
of a Microware SSM for the memory management unit in the 68030
processor. This system call adds a memory area to the memory map of a
process, permitting the process to access that memory. The parameters to the
call are:

Register Size

dO 1
dl b

a2 1

Description
Size of the memory area.
Access mode requested (read, write, execute) in the same format as
path modes.
Address of the memory area.

If the call is made from user state, an error is returned unless the call is
made by a member of the super user group (group zero). If the process was
forked by the F$DFork system call, as a debugged process, the memory area
is also added to the parent's memory map. This is recursive, so a debugged
process can fork a debugged process, and so on.

The memory address is rounded down to the nearest whole block of the size
supported by the MMU (the System Minimum Allocatable Block Size). The
size is rounded up to a whole number of blocks, to include the start and end
addresses of the area requested. This ensures that the whole of the desired
memory area is accessible to the process, without the process needing to
know the system minimum allocatable block size.

If the process is the System Process (the process ID is one), the system call
does nothing.

Read and execute permissions are always granted (the 68030 MMU does not
distinguish between them). Write permission is only enabled if requested in
the access modes.

The SSM must take account of the possibility that F$Permit will be called
more than once for the same process and memory area. For example, a
process might link to the same module several times. Therefore the SSM
searches the process's memory map to see if the block is already in the
process's memory map. If so, the SSM just increments a use counter that it
keeps for each block in a process's memory map. Otherwise it adds the block
to the process's memory map, and sets the use counter for that block to the
initial value of one.

252

OS-9 SYSTEM CALLS

This feature is necessary so that when a request is made to unmap the block
- for example, when a module is unlinked - it is only actually removed from
the process's map when the block is no longer required for any reason. (See
the description of F$Protect below). Note that the precision of the use count
may be limited - for example, the SSMs for the 68030 and 68040 maintain an
8 bit use counter for each block. Therefore a possibility of error exists if a
block is "mapped to" more than 255 times by the same process (for example,
if a module is linked to more than 255 times by the same process). The SSM
limits the counter to 255, so after 255 "unlinks" the module will be removed
from the map of the process, even though the process believes it is still linked
to the module.

If the MMU has internal memory maps, the SSM does not update the MMU
during this system call. Rather, it updates the map in memory that will be
copied to the MMU when the process is next about to execute in user state
(see the description of the F$AllTsk system call above). While in system
state the MMU is configured to remove all protections - operating system
functions (and system state programs and trap handlers) have unrestricted
access to the full memory map of the processor.

If the SSM is not used (and so has not installed a handler for this system
call), the kernel's default handler simply reads the first byte of the memory
area. This will generate a bus error if the memoiy is not accessible, or does
not exist, causing the calling process to be aborted (unless it has installed a
bus error handler - see the F$STrap system call, and the chapter on
Exception Handling).

11.5.14 F$Protect System Call

This system call is the complement to F$Permit. It removes a memory area
from the memory map of a process, denying the process access to that
memory. The parameters to the call are:

Reqi ster Si ze Description
dO 1 Size of the memory area.
a 2 1 Address of the memory area.

If the call is made from user state, an error is returned unless the call is
made by a member of the super user group (group zero). If the process was
forked by the F$DFork system call, as a debugged process, the memory area
is also removed from the parent's memory map. This is recursive,
complementing the nested F$DFork calls supported by F$Permit.

253

OS-9 SYSTEM CALLS

As with F$Permit, the memory address is rounded down to the nearest
whole block of the size supported by the MMU (the System Minimum
Allocatable Block Size). The size is rounded up to a whole number of blocks,
to include the start and end addresses of the area requested.

If the process is the System Process (the process ID is one), the system call
does nothing.

The system call decrements the use count in the process's memory map for
each block in the memory area (see the description of F$Permit above). If
the use count for a block reaches zero, it is removed from the process's
memory map.

If the SSM is not used (and so has not installed a handler for this system
call), the kernel's default handler simply reads the first byte of the memory
area. This will generate a bus error if the memory is not accessible, or does
not exist.

The kernel uses this system call whenever a memory area is de-allocated by
a process, or the process unlinks from a module.

11.5.15 F$SysDbg System Call

This system call causes the kernel to call the "system debugger", if one is
present. The kernel makes a subroutine call to the routine whose address is
in the D_SysDbg field of the System Globals. The kernel only checks that
the caller is the super-super user (user zero of group zero). It does not set up
any registers for the "system debugger" (although the a6 register contains
the address of the System Globals). From OS-9 version 2.3 onwards, the
kernel makes the F$CCtl system call to flush and disable the data and
instruction caches before calling the debugger, and to flush and enable the
caches on return from the debugger.

The DJSysDbg field of the System Globals is initialized during the kernel's
coldstart to the "boot entry point" address passed from the boot program,
plus 16. In the boot program, this should point to a branch instruction to the
ROM-based debugger. Therefore executing the F$SysDbg system call
normally invokes the ROM-based debugger. This halts the normal operation
of the system. The ROM-based debugger will continue normal system
operation in response to the "go" (g[CR]) command.

254

OS-9 SYSTEM CALLS

11.5.16 F$SysID System Call

The kernel header contains a licensee number, a serial number, the
processor type this kernel supports, and (in an encrypted form prior to OS-9
version 2.3) a version description string and a copyright string. The body of
the kernel also contains an author names string in an encrypted form. This
system call returns these items (with the strings decrypted as necessary),
together with the processor type in use (determined dynamically by the boot
program).

The processor type numbers are the Motorola part number: 68000, 68010,
68020, 68030, 68040, 68070 and so on. For example, a 68010 processor
running the 68000 version of the OS-9 kernel would give a kernel processor
type of 68000, and the processor type in use as 68010.

The strings returned are null terminated, and will not be longer than 80
characters, including the null. The parameters to the system call are:

Reqi ster Si ze Description
aO 1 Address of the buffer for the version string.
al 1 Address of the buffer for the copyright string.
aZ 1 Address of the buffer for the author names string.

If a buffer address is passed as zero, the system call handler does not attempt
to copy that string. Apart from copying the strings to the buffers, the system
call returns:

Register Si ze Description
dO 1 OS-9 licensee number.
dl 1 Serial number of this copy of OS-9.
dZ 1 Processor type in use.
d3 1 Kernel processor type.

d4-d7 1 Zero.

The licensee number and serial number are one by default, but may be used
by Microware or the licensee (the manufacturer of the computer system) to
identify the licensee and the individual copy of OS-9, as a piracy protection
measure.

255

OS-9 SYSTEM CALLS

256

	CHAPTER 11
OS-9 SYSTEM CALLS
	11.1 THE SYSTEM CALL MECHANISM
	11.2 SYSTEM CALL PARAMETERS
	11.3 CUSTOM SYSTEM CALLS
	11.4 USER AND SYSTEM STATE CALLS
	11.5 THE SYSTEM CALLS
	11.5.1 F$AllTsk System Call
	11.5.2 F$CCtl System Call
	11.5.3 F$ChkMem System Call
	11.5.4 F$DatMod System Call
	11.5.5 F$DelTsk System Call
	11.5.6 F$FModul System Call
	11.5.7 F$GBlkMp System Call
	11.5.8 F$GProcP System Call
	11.5.9 F$Gregor System Call
	11.5.10 F$GSPUMp System Call
	11.5.11 F$IODel System Call
	11.5.12 F$Load System Call
	11.5.13 F$Permit System Call
	11.5.14 F$Protect System Call
	11.5.15 F$SysDbg System Call
	11.5.16 F$SysID System Call

