
EXCEPTION HANDLING

CHAPTER 10

EXCEPTION HANDLING

68000 family exceptions are a class of processor operations that 
change the flow of control of the processor without losing the 
current state of the program. Each exception condition has a 
number from 0 to 255, identifying the particular exception.

The exceptions fall into three groups:

a) Explicit program instructions - trap #n, TRAPV, CHK, 
CHK2, TRAPcc, and cpTRAPcc.

b) Special events occurring during the execution of an 
instruction - Bus Error, Address Error, Illegal Instruction, 
Zero Divide, Privilege Violation, Trace, Line 1010 and Line 
1111 Emulator, Coprocessor Protocol Violation, Format 
Error, and Coprocessor Exceptions.

c) External signals - Reset, Auto-vectored Interrupts, and 
Normal Vectored Interrupts.

Groups (a) and (b) together are sometimes known as the "hardware 
exceptions". All exceptions cause the same sequence of operations:

1) The current program counter and status register are saved on 
the supervisor stack. The 68010/020/030/040 also save a stack 
format word and a vector offset word. Depending on the 
exception, other information may also be stacked. For 
example, internal state information is stacked on bus error, to 
allow virtual memory support (not the 68000). This operation 
is omitted for the Reset exception.
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2) The status register is updated - the supervisor state bit is set, 
the trace bit is cleared, and the interrupt mask is set to the 
appropriate level (Reset and Interrupt exceptions only). The 
Reset exception also sets the Vector Base Register to zero (not 
the 68000).

3) The appropriate vector (exception handler routine address) is 
obtained from the exception vector table (indexed by the 
exception number), and put in the Program Counter. The 
Reset exception also sets the supervisor stack pointer from 
the long word at absolute location zero. For normal vectored 
interrupts the vector number (64 to 255) is read from the 
interrupting device. For other exceptions the vector number 
is generated internally (or provided by the coprocessor, for 
coprocessor exceptions).

10.1 EXCEPTION HANDLING UNDER OS-9
OS-9 provides default handling for all exceptions. It also provides 
mechanisms for programs or operating system components to handle any or 
all exceptions.

OS-9 creates four groups of exceptions:

a) The trap #0 instruction, used to make operating system 
calls.

b) The other trap #n instructions (1 to 15), used to call trap 
handler modules.

c) Exceptions as the result of instruction execution - the 
"hardware" exceptions, other than the trap #n exceptions.

d) Interrupts.

OS-9 provides separate mechanisms for handling each of these groups. 
There are also two mechanisms that apply to all exceptions:

a) Overwriting the exception jump table (always in RAM).

b) Overwriting the exception vector table (may be in ROM, and 
therefore not writable).

These two mechanisms allow slightly more rapid access to exception 
handling routines, in particular interrupt service routines. However, because 
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the exception handling is not through the kernel, operating system calls must 
be used with extreme care. The D_IOGlob area of the System Globals can be 
used for the storage of variables - for example, it can hold a copy of the old 
vector, so the interrupt service routine can continue on into the kernel's 
interrupt handler if desired.

Typical uses are pseudo-DMA and software dynamic RAM refresh.

10.2 USER AND SYSTEM STATE RETURN
The "user state return” routine is called by the kernel after handling any 
exception if the processor was in user state before the exception, or a task 
switch has been performed and the current process is about to be executed in 
user state. The kernel performs the following sequence of operations:

1) The kernel tests the "timed out" flag in the process descriptor 
(and clears it, ready for the next time slice). If it is set, the 
kernel performs a task switch, unless the active queue is 
empty, in which case it allows the current process to continue 
execution. From OS-9 version 2.3 onwards, it first checks 
that the priority of the process is not below the "minimum 
priority" threshold (D_MinPty in the System Globals). 
Otherwise it inserts the process in the active queue, to force 
it to be suspended.

2) If the process was not timed out, the kernel checks whether 
the process is "condemned" (bit 1 of the P$State field of the 
process descriptor is set) - the process has received a "kill" 
signal, or a debugged process has died. If so, it terminates the 
process, and calls the F$NProc routine to make the next 
process in the active queue the current process.

3) The kernel checks whether the process has a signal pending 
(the P$Signal field of the process descriptor is not zero), and 
the signal mask (P$SigLvl) is clear. If so, the kernel 
terminates the process if it has no signal handler routine 
installed, otherwise the kernel copies the process's register 
stack frame to the process's user stack (so that execution 
continues with the main body of the program when the signal 
handler finishe, by making an F$RTE system call), sets the 
signal mask to one, and modifies the register stack frame as 
follows:
dO = number of signals in the queue (including the current
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one).
dl = the signal code.
<12 = zero.
a6 = signal handler's static storage.
pc = address of signal handler routine.
This causes the signal handler to be executed when the 
process is restarted.

4) If the system has a floating point unit, the kernel saves the 
current FPU context, and restores the FPU context of the 
new current process (unless there was no change of current 
process).

5) If the system is using the SSM, the kernel calls the F$AllTsk 
routine, to ensure the MMU is correctly set up for the 
process.

6) The kernel clears bit 7 of the P$State field of the process 
descriptor, to indicate that the process is executing in user 
state.

7) Lastly, the kernel restores the data and address registers 
from the register stack frame, adds 4 to the stack pointer to 
ditch the vector offset value (see the section on the Exception 
Jump Table), and executes the rte instruction. This 
instruction loads the status register and program counter 
from the stack, causing execution to continue with the 
instruction following the system call, or the point at which an 
interrupt occurred or the process was suspended by a task 
switch.

If the process is returning to system state (for example, an operating system 
component makes a system call, or a system call routine is interrupted), only 
step 7 is executed. It is this that causes system calls to be indivisible.

Additional system calls can be installed, or existing ones replaced using the 
F$SSvc privileged system call. This is normally done by a kernel 
customization module, but may be done by any operating system component, 
such as a device driver or file manager.

10.3 SYSTEM CALLS - TRAP #0
This processor instruction is reserved in OS-9 for making operating system 
calls. A system call instruction has the form:
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trap #0
dc.w funct1on_code

The Microware assembler provides a built-in macro os9 to do this in one 
instruction. For example:

trap #0
dc.w FSLink

can be expressed as:
os9 F$L1nk

When this exception occurs, the kernel reads the function code word pointed 
to by the saved program counter (on the supervisor stack), and then adds two 
to the saved program counter, updating it to point at the instruction 
following the function code.

The kernel uses the function code word as an index into either the User or 
the System Dispatch table, depending on whether the call was made from 
user or supervisor state respectively (the kernel tests the supervisor state flag 
- bit 13 - of the saved status register on the supervisor stack). The table 
entry is the address of the routine to call to handle the system call.

Unless the call is made from within an interrupt service routine, the stack 
used for the system call is naturally the System State stack of the calling 
process (the upper half of the Process Descriptor), because the processor 
automatically switches from using the user stack to using the supervisor 
stack when an exception occurs (because the supervisor state bit is set in the 
status register). When a process is forked, the kernel sets its system state 
stack pointer (in the P$sp field of the process descriptor) to the address of 
the top of the process descriptor. When a process becomes the current 
process, the kernel sets the processor's supervisor stack pointer register from 
the P$sp field of the process descriptor. When a process ceases to be the 
current process (it goes to sleep, or a task switch occurs), the kernel saves the 
processor's supervisor stack pointer register in the P$sp field of the process 
descriptor.

The kernel's handler for the trap #0 exception saves all the data and 
address registers, making a register stack frame on the process's system state 
stack. The stack frame includes not only the data and address registers, but 
also above them the vector offset (the vector number times four) as a long 
word in the R$a7 field, the status register (a word), and the program counter 
(updated past the trap #0 instruction as part of the processor's exception 
handling). The kernel clears the condition codes register (the low byte of the 
status register) in the stack frame, so that the default is to return the carry 
flag clear to the caller, indicating no error.
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If the call is made from user state, the kernel also saves the supervisor stack 
pointer (pointing to the stack frame) and user stack pointer registers in the 
P$sp and P$usp fields of the process descriptor respectively. The kernel 
then saves the values currently in the P$ExcpPC and P$ExcpSP fields of 
the process descriptor, and sets them equal to the supervisor stack pointer 
and the address of the instruction following the kernel's call to the system 
call handler routine. This causes any hardware exception within the system 
call handler to return cleanly to the kernel, as described below.

The kernel copies the function code to the high word of the "stack pointer" 
field (R$a7) of the stack frame (the low word contains the vector offset, 
placed on the stack as a long word by the exception jump table instructions), 
and sets the a5 register to point to the stack frame. The system call handler 
routine will use the stack frame to access the caller's parameters, and to 
return values to the caller.

Finally, the kernel uses the function code, as described above, to get the 
address of the appropriate handler routine, and also to get the address of the 
static storage of the handler routine (see the chapter on the OS-9 Internal 
Structure). The kernel then calls the handler routine. On return from the 
handler routine (which could be as the result of a hardware exception), the 
kernel checks the returned carry flag. If it is set, the kernel sets the carry 
flag in the condition codes register in the stack frame, clears the high word of 
the dl register in the stack frame, and writes the error code (returned in the 
low word of the dl register) to the low word of the dl register in the stack 
frame. Note that this means that if there is no error, the dl register is 
preserved (unless it was changed in the stack frame by the system call 
handler routine), otherwise the dl register contains the error code as a long 
word (the high word is zero).

On return from the system call handler, and having set the error status in 
the stack frame if there was an error, the kernel branches to its "user state 
return" or its "system state return", depending on whether the call was made 
from user or system state.

10.4 TRAP HANDLER MODULES - TRAPS #1 TO #15
These processor instructions are used within OS-9 to call trap handler 
modules. A trap handler module is essentially an OS-9 memory module 
containing any number of subroutines that can be called by function code 
rather than by address, and that has its own static storage, separate from 
that of the process using the trap handler. This provides a mechanism for 
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calling functions without the need to know the address of the functions, or 
the need to reserve static storage for them.

Microware provide the cio and math trap handler modules. The C libraries, 
in conjunction with 'cstart.a', use trap #13 and trap #15 respectively to call 
these trap handler modules, although in principle any trap number can be 
used to call any trap handler module. The program wishing to use a trap 
handler module makes the F$TLink system call, specifying the name of the 
trap handler module, the number of the trap instruction (1 to 15) that will be 
used to call it, and an "additional static storage" size (usually zero).

The kernel allocates static storage memory for the trap handler. The size of 
the static storage is the sum of the M$Mem and M$Stack fields of the trap 
handler's module header, and the "additional static storage" parameter to the 
F$TLink system call. The trap handler may not require any static storage, 
in which case its M$Mem and M$Stack fields are zero. The kernel saves the 
addresses of the trap handler module and its static storage, and the size of 
the static storage, in the process descriptor of the calling process. The process 
descriptor fields used (P$Traps, P$TrpMem, and P$TrpSiz) are each 
arrays of 15 entries, so a process can use up to 15 trap handlers concurrently, 
one for each trap #n instruction other than trap #0.

Note that the static storage for the trap handler is allocated separately for 
each process that has used the F$TLink system call to link to the trap 
handler. The kernel initializes the static storage in the same way that it does 
for a program, so initialized data can be used. Also, the kernel adds 32k to 
the static storage address before saving it in the process descriptor, just as is 
done for a program. The linker compensates by subtracting 32k from all 
static storage references when creating a trap handler module. As for a 
program, this is done to maximize the amount of static storage that can be 
accessed using the signed 16-bit constant offset indexed addressing mode of 
the 68000 processor family.

A trap handler can execute in user or supervisor state. The kernel will 
execute trap handler functions in supervisor state if the "system state" bit is 
set in the attributes field of the module header. However, the kernel will give 
a "no permission" error (E PERMIT) if an F$TLink system call is made for 
a system state trap handler which was not created by a super user - that is, 
the owner group number (the high word of M$Owner) of the module header 
is not zero.

Once a process has linked to a trap handler using the F$TLink system call, 
it can call the functions of the trap handler using the trap #n instruction 
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followed by a 16-bit function code. For example, to call the sscanfO function 
in the cio trap handler:

trap #13 
dc.w $1A

Unless the trap handler is a system state trap handler, the kernel builds a 
parameter frame on the user state stack (as show below), restores the data 
and address registers, and uses the rte instruction to return to the state 
(system or user) of the caller and jump to the trap handler.

Therefore if a system state process calls a "user state" trap handler, the trap 
handler is called in system state. However, because the stack frame is built 
on the user state stack, the trap handler will have no access to the stack 
frame (unless it knows it is being called from system state, which it cannot 
check if it could also be called from user state, as reading the high byte of the 
status register in user state is only possible on the 68000/010). This implies 
that a system state process cannot successfully call a user state trap handler.

If the trap handler is a system state trap handler, the kernel builds a stack 
frame as described below, and calls the trap handler entry point as a 
subroutine (in system state). On return, the kernel calls its "return to user 
state" function. This implies that a system state process should not call a 
system state trap handler. Note that prior to OS-9 version 2.3, the kernel 
jumped directly to the trap handler entry point, so it was the responsibility of 
the trap handler to finish with an rte instruction. Since OS-9 version 2.3 the 
trap handler returns to the kernel with an rts instruction, allowing the 
kernel to perform its normal "return to user state" checks.

10.4.1 The Trap Handler Routine

Because a user state trap handler returns directly to the calling process, not 
through the kernel, it is the trap handler's responsibility to preserve or 
modify the processor registers as required. In effect, the trap handler is 
acting as a subroutine of the program. The kernel calls a user-state trap 
handler with the following register parameters and stack frame:

d0-d7/a0-a5 = caller's registers
(a6) = trap handler's static storage 
a7 = usp
8(a7) .1 = caller's return program counter
6(a7).w = exception vector offset
4(a7).w = trap function code 
0(a7).1 = caller's a6

The exception vector offset is the offset for the trap instruction vector, which 
is (32 + trap_number)*4. If the trap handler has no private static storage, the 
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a6 register passed is the value used by the program when making the 
F$TLink system call - usually the address of its own static storage. The trap 
handler must use the function code to decide which subroutine to execute. 
On return from the subroutine it must restore the caller's a6 register from 
the stack frame, add 8 to the stack to remove the parameters, and execute an 
rts instruction to return to the program.

Because the trap handler is effectively acting as a subroutine of the program, 
it can make any system calls, which will be made on behalf of the program. 
However, C library functions must be used with care, as they may use private 
static storage variables. These static storage variables will be in the trap 
handler's static storage, not the program's, which might cause some conflict 
(for example, when using buffered I/O functions such as freadO).

A system state trap handler is called with registers and stack frame as 
follows:

d0-d7/a0-a5 = caller's registers
(a6) = trap handler's static storage
a7 = ssp
8(a7).l = kernel's return program counter
6(a7).w = exception vector offset
4(a7).w = trap function code
0(a7) .1 = caller's a6

The trap handler acts in the same way as a user state trap handler. Note, 
however, that it is not necessary to restore the caller's a6 register, as the 
kernel immediately loads a6 with the System Globals address. The kernel 
preserves the caller's a6 register itself. As with all system state components, 
the stack used is the calling process's system state stack, in the upper half of 
the process descriptor.

Prior to OS-9 version 2.3, a system state trap handler was called with a 
slightly different stack frame:

10(a7) .1 = caller's return program counter
8(a7).w = caller's status register
6(a7).w = exception vector offset
4(a7).w = trap function code
0(a7).1 = caller's a6

It was the responsibility of the trap handler to restore the caller's a6 register 
from the stack frame, add 8 to the stack pointer, and return directly to the 
caller with an rte instruction.
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10.4.2 Installing Trap Handlers

A process can install (link to) a trap handler by using the F$TLink system 
call. This can be explicitly executed in the main body of the program. 
However, to make the use of trap handlers as transparent as possible, the 
F$TLink system call can instead be executed automatically when the first 
trap #n instruction tries to call the trap handler. To do this, a program must 
have an "uninitialized trap handler entry point". This is a routine in the 
program module, the offset to which is given in the M$Excpt field of the 
module header. The offset is calculated by the linker, from the entry point 
symbol given as the seventh parameter to the psect directive.

When the program executes a trap #n instruction, if the process does not 
have a trap handler installed for that trap number, the kernel calls the 
program's uninitialized trap handler routine with the registers and stack 
frame exactly as for a user state trap handler. The routine should use the 
vector offset value on the stack to determine which trap handler is required, 
and execute the F$TLink system call to install the trap handler. It must 
then re-execute the trap #n instruction. This is done by subtracting 4 from 
the return address in the stack frame, to point again at the trap #n 
instruction, and then returning in the same way as a user state trap handler. 
This is valid for both user and system state trap handlers. The 'cstart.a' file 
used for C programs contains such a routine - it is worth studying as an 
example.

The F$TLink system call attempts to link to the required trap handler. If 
the trap handler module is not in the module directory, the kernel attempts 
to load a file of the given name, relative to the current execution directory, 
and uses the first module in the file. The kernel then allocates and initializes 
the trap handler's static storage (if any), and calls the initialization routine of 
the trap handler. The initialization routine of a user state trap handler is 
called with the following registers and stack frame:

dO-d7 = caller's registers (dO.w - trap number)
(aO) = caller's trap module name string, updated past end of string 
al.l = address of the trap execution routine 
(a2) = trap handler module header 
a3-a5 = caller's registers
(a6) = trap handler's static storage 
8(a7) .1 = caller's return program counter 
4(a7). 1 = zero
0(a7).1 = caller's a6 register

The initialization routine returns directly to the calling program, not to the 
kernel, just as the main trap handler execution routine does. The 
initialization routine must finish by restoring the caller's a6 register, 
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removing the 8 bytes of information on the stack, and returning to the 
calling program with an rts instruction.

The initialization routine of a system state trap handler is called with:
dO-d7 = caller's registers (dO.w = trap number)
(aO) = caller's trap module name string, updated past end of string 
(al) = System Globals
(aZ) = trap handler module header 
a3-a5 = caller's registers
(a6) = trap handler's static storage
8(a7) .1 = return program counter (Into kernel)
4(a7) .1 - zero
0(a7).l = caller's a6 register

On return from the system state trap handler's initialization routine, the 
kernel copies the returned registers d0-d7/a0-a5, and ccr, to the calling 
program's register stack frame. The initialization routine must therefore 
preserve all the registers other than a6 that its specification does not 
explicitly state will be changed, just as for a user state trap handler. Note 
that normally a trap handler preserves all the registers, but OS-9 permits it 
to return results to the calling program by changing the registers. The 
system state trap handler's initialization routine is called in system state, as a 
subroutine of the kernel. It should finish by restoring the caller's a6 register, 
removing the 8 bytes of information on the stack, and returning to the kernel 
with an rts instruction. As with all system state components, the stack used 
is the calling process's system state stack, in the process descriptor.

Prior to OS-9 version 2.3 the initialization routine of a system state trap 
handler was called with a slightly different set of parameters and stack 
frame:

d0-d7 - caller's registers (dO.w = trap number)
(aO) = caller's trap module name string, updated past end of string 
al.l - the address of the trap execution routine
(aZ) = trap handler module header 
a3-a5 = caller's registers
(a6) = trap handler's static storage
10(a7).1 - return program counter (to calling program)
8(a7) = caller's status register
4(a7).1 - zero
0(a7) .1 - caller's a6 register

This initialization routine returns directly to the calling program, not to the 
kernel, just as a user state trap handler initialization routine does. The 
initialization routine must finish by restoring the caller's a6 register, 
removing the 8 bytes of information on the stack, and returning to the 
calling program with an rte instruction.
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10.4.3 Terminating Trap Handlers

Although the module header format for a trap handler includes the offset to 
a termination routine, the termination routine is never called. The trap 
handler is simply unlinked and its static storage memoiy is returned when 
the program makes the F$TLink system call with a module name pointer of 
zero (for the appropriate trap number), or when the program terminates.

It is possible that future releases of OS-9 will call the termination routine, so 
a trap handler should include a termination routine, expecting the same 
registers and stack frame passed to the initialization routine, and returning 
to the caller with the carry flag clear. Alternatively, and following 
Microware's example in the OS-9 Technical Manual, the termination routine 
could execute an F$Exit system call with a suitable error number 
(Microware suggest 455).

10.4.4 Writing a Trap Handler in C

The OS-9 Technical Manual gives an example of a user state trap handler in 
assembly language. However, just as with device drivers and file managers, it 
is also possible to write a trap handler in C, provided a suitable "skeleton" in 
assembly language is provided. Such a skeleton (for a system state trap 
handler) is shown below. Note that by saving the registers on the stack, the 
skeleton is providing a complete stack frame to the C function that handles 
the trap instructions, including the condition codes register (ccr). From 
OS-9 version 2.4 onwards, Microware provides the source code of a skeleton 
user state trap handler, in the directory 'C/SOURCE'.

The trap handler skeleton below presets the ccr image to zero, so that the 
default return is with the carry flag clear, but the C function can set any ccr 
bits (such as the V bit, to indicate arithmetic overflow). Note that in order 
not to need to reconstruct the stack frame passed by the kernel, the ccr 
image is held in the stack frame location normally used for the a7 register 
(R$a7 in assembly language, or a[7] in C), and is manipulated as a long word 
(that is, the actual ccr image is in the last byte of the four byte field).
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* Static storage (local to trap handler)

* File: trapskel.a
* System state trap handler skeleton for a trap handler 1n C

use /dd/defs/oskdefs.d
Typ_Lang set (TrapL1b«8)+0bjct
Att_Revs set (ReEnt+SupStat)«8
Edition set 2

********
psect

***********i
trapskel,Typ_Lang,Att_Revs,Edition,O.TrapEnt 

fc********************

errno:
vsect 
ds.l 1 
ends

standard C error number location

****************************************

* Entry point offset table:

dc.l Traplnit
dc.l TrapTerm

Initialization routine 
termination routine

****************************************

* Traplnit
* Initialize trap handler 
*

* Passed: dO.w = trap number
* dl.l = additional static storage allocated (caller's dl)
* d2-d7 = caller's registers
* (al) = trap handler execution entry point
* (a2) - trap handler module header
* a3-a5 = caller’s registers
* (a6) = trap handler static storage
* 4(a7) = 0
* 0(a7) = caller's a6 (static storage ptr)
* Returns: carry set 1f error, with error code 1n dl.w
* May destroy: ccr
*
* Parameters passed to C function 'traplnit':
* 1nt trap1n1t()
* The C function returns zero if no error, else the OS-9 error code.

Traplnit
movem.l dO-dl/a5,-(a7) save caller's regs
move.w #0,a5 reset stack trace pointer
bsr traplnit call C function
tst.l dO any error?
beq.s TrapInitlO . .no
move.l dO,4(a7) overwrite saved dl with error
or1 #Carry,ccr show error

TrapInitlO movem.l (a7)+.dO-dl/a5-■a6 retrieve caller's regs
addq.1 #4.a7 ditch zero parameter
rts
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* TrapTerm
* Trap handler termination function
* NOTE: at present OS-9 never calls the termination function of a trap 
* handler.

TrapTerm 
move.w #1<<8+I99,dl Microware's suggested 'crash' 
os9 FtExit

* TrapEnt
* Trap handler main entry point

* Passed: dO-d7 = caller's registers
* a0-a5 = caller's registers
* (a6) = trap handler static storage
* 6(a7) = trap vector offset (word)
* 4(a7) = trap function code (word)
* 0(a7) = caller's a6 (static storage ptr)
* Returns: depends on C function 'trapent'
* May destroy: depends on C function 
*

* Parameters passed to C function 'trapent':
* void trapent(x.r)
* 1nt x: /* function number */
* REGISTERS *r; /* caller's stack frame ptr */
* The C function may return values to the caller by modifying the stack
* frame (d0-d7/a0-a5 and ccr 1n R$a7 only). 
*
TrapEnt

movem.l dO-d7/aO-a5,-(a7)
move.w #0,a5
moveq.1 #O,dO
move.w 60(a7),d0
move.l a7,dl
clr.l R$a7(a7)
bsr trapent
movem.l (a7)+,dO-d7/aO-a6
move.b 3(a7),ccr
addq.l #4,a7 
rts

ends

make stack frame 
reset stack trace pointer

get function code
copy stack frame address 
clear "ccr" 
call C function 
retrieve registers 
set return ccr 
ditch ccr Image
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The main body of the trap handler - written in C - must be in a separate 
source file. Below is a "do nothing" example, compatible with the skeleton 
above:

/* File: trap.c
Trap handler main body

*/

#1nclude <errno.h>
#1nclude <modes.h>
#1nclude <types.h>
(/Include <MACHINE/reg.h>

/* error numbers */
/* file modes */
/* unsigned data types */
/* register stack frame */

/* Static storage: */ 
1nt call_count=0;

/* Initialize trap handler */
int trap1nit()
(

return(O);
)

/* Main trap handler function */ 
void trapent(x.r) 
int x;
REGISTERS *r:
(

call_count++: /* count
switch (x) {

case 1:
r->d[0]=call_count;
break: 

default:
r->d[l >E_UNKSVC;
r->a[7]|-l;
break;

}

/* number of calls received */

/* no error */

/* function number */
/* caller's stack frame ptr */

calls (for something to do) */
/* act on function code */
/* request call count */
/* return call count 1n dO */

/* unknown request */
/* error code */
/* set carry flag 1n ccr */
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As when writing a device driver or file manager in C, a make file should be 
used. However, for the purposes of the example, equivalent command lines to 
assemble, compile, and link the trap handler are shown below:

$ r68 trapskel.a -qo=RELS/trapskel.r
$ cc -qr=RELS trap.c
$ 168 RELS/trapskel.r RELS/trap.r -l=/dd/LIB/clibn.1
-l=/dd/LIB/math.1 -l=/dd/LIB/sys.1 -O=OBJS/trap

A simple make file to do the same thing is shown below:
# make file to make ’trap’ module
RDIR = RELS #
ODIR = OBJS #
LDIR = /dd/LIB #
CFLAGS = -q #

RFLAGS = -q #

RFILES = trapskel.r trap.r #

trap: $(RFILES) #
Chd S(RDIR):168 S(RFILES) 

-l=S(LDIR)/sys.l -0=.

directory for ROFs
directory for object modules
directory for libraries
compiler flags for automatically \

generated command lines
assembler flags for automatically \ 

generated command lines
names of ROFs

root dependency - make 'trap'
-1=$(LDIR)/cl1 bn.1 -1=$(LDIR)/math.1 \ 
/$(0DIR)/$e

10.5 HARDWARE EXCEPTIONS
These exceptions - such as bus error, address error, and illegal instruction - 
always occur as a result of a problem in executing a program instruction. The 
exception may be a normal part of program execution (for example, a 
TRAPV instruction generating an exception as the result of overflow in an 
arithmetic operation), or it may indicate a programming error (for example, 
if an illegal instruction exception occurs). Normally, if one of these 
exceptions occurs during the execution of a process, the kernel will 
immediately terminate the process, as such an exception implies an 
unexpected catastrophic error. The exit status of the program is calculated as 
100 plus the exception number. For example, a bus error will give an exit 
status of 102, and an address error will give an exit status of 103. However, 
in some circumstances the programmer may be able to anticipate and cope 
with the error. OS-9 therefore provides a means for a program to intercept 
these exceptions.

Hardware exceptions in system state usually indicate a fatal system error. 
However, the error may be recoverable or ignorable - preferable to crashing 
the system. OS-9 therefore provides a separate means for such exceptions to 
be handled, and the kernel uses this to provide a basic protection against 
system state exceptions in system calls. If this mechanism has not been reset 
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or changed by the system call, and a hardware exception occurs during the 
system call, the kernel returns the exception as an error to the calling 
program. The error code is 100 plus the exception number. For example, a 
bus error gives error code 102.

In systems which include one of the Microware ROM-based debuggers, the 
exception vector table entries for some of the hardware exceptions (bus error, 
address error, and illegal instruction) point to handlers in the debugger, 
rather than the corresponding entries in the exception jump table (see the 
section on the Exception Jump Table). The debuggers have an "enable" 
command - "e[CR]". If the debugger is "enabled", and one of these exceptions 
occurs, the debugger is entered and performs a register dump. This allows 
the programmer to investigate the cause of these potentially fatal error 
conditions. If the debugger is not "enabled", the debugger jumps to the 
appropriate entry in the exception jump table, causing the exception to be 
processed in the normal way by the kernel.

10.5.1 Hardware Exceptions in User State

A process can install handler routines for one or more of the hardware 
exceptions. The handler routine will only be called if the exception occurs 
while the process is executing in user state. The handler will not be called if 
the exception occurs while another process is the current process, or if the 
exception occurs while the processor is in supervisor state. Once installed, a 
handler routine may be removed by a further program request, in which case 
a subsequent exception of that type will cause the program to be terminated.

The handler routines are installed and removed using the F$STrap system 
call. The program passes a pointer to a list of structures, each describing a 
handler to be installed. Each structure consists of two 16-bit words. The first 
word gives the 68000 exception vector offset. For example, the bus error 
exception is exception number 2, so it has an exception vector offset of 8, four 
times the exeception number. Microware have provided symbolic definitions 
for the exception vector offsets in the file 'DEFS/sysglob.a' (so the symbols 
are available from the library 'LIB/sys.l', included by the cc executive when 
linking a C program). The symbols all start with the characters T . For 
example, the bus error exception vector offset has the symbol T_BusErr. 
The following table shows the exceptions that can be intercepted, with their 
numbers, offsets, and symbolic names for the offsets.
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Description Number Offset Symbol

Bus error 2 8 T_BusErr

Address error - odd address when even 
required

3 12 T_AddErr

Illegal instruction 4 16 T_I11 Ins

Divide by zero 5 20 T_ZerD1v

CHK instruction 6 24 T_CHK

TRAPV instruction - arithmetic overflow 7 28 T_TRAPV

Privilege violation - supervisor state 
instruction executed in user state

8 32 T_Pr1v

Line 1010 emulator 10 40 T_1010

Line 1111 emulator 11 44 T_llll

FPU Branch or set on unordered condition 48 192 T_FPUnordC

FPU inexact result 49 196 T_FPInxact

FPU divide by zero 50 200 T_FPDlvZer

FPU underflow 51 204 T_FPUndrFl

FPU operand error 52 208 T_FP0prErr

FPU overflow 53 212 T_FPOverFl

FPU not a number 54 216 T_FPNotNum

The second word in the structure gives the offset to the routine. The offset is 
calculated from the end of the structure. The following assembly language 
line would produce the appropriate structure for a bus error handler 
function BusError:

dc.w T_BusErr,BusError-*-4

The list is terminated by a word of -1 ($FFFF). The list shown below would 
provide handlers for the bus error, address error, and illegal instruction 
exceptions:

Handlers dc.w T_BusErr.BusError-*-4
dc.w T_AddErr,AddError-*-4
dc.w T_111 Ins,Ill Error-*-4
dc.w -1

The order of the structures in the list is not important (unless there are two 
for the same exception vector offset!). The calling program passes a pointer 
to the list in the al register, and a stack frame space pointer in the aO 
register. The kernel saves the handler address and the stack frame space 
address in two tables in the caller's process descriptor. The handler addresses 
are saved in the table at P$Except, and the stack frame addresses are saved 
in the table at P$ExStk.
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If the routine offset in a list structure is zero, the kernel clears the handler 
address in the appropriate entry of the P$Except table. This is the way the 
handler for an exception can be removed:

NoHandlers dc.w T_BusErr,0
dc.w T_AddErr,0 
dc.w T_IlIIns.O 
dc.w -1

Note that because the offsets are word values relative to the address of the 
table entries, the handler routines must be located in the program module 
containing the table, and cannot be more than plus or minus 32k bytes away 
from the table entry.

The 68020/030 with FPU (68881 or 68882), and the 68040 (which has an 
internal FPU), can generate additional floating point exceptions. These are 
supported in the same way by OS-9. The handler addresses and stack frame 
addresses are saved in additional tables in the process descriptor, 
P$FPExcpt and P$FPExStk respectively.

When a hardware exception occurs in user state, the kernel uses the vector 
offset of the exception as an index into the table in the process descriptor of 
the current process. If the handler address is zero, the kernel terminates the 
process, giving it an exit status of 100 plus the exception number. Otherwise, 
the kernel builds a register stack frame in the memory whose address was 
given by the F$STrap system call. If the stack frame space address is zero, 
the kernel uses the process's current user stack pointer.

Note that in either case the kernel builds the stack frame below the address 
given (simulating a push down stack). Therefore when giving a fixed address 
at which to build the stack frame, the program must add the size of the stack 
frame to the base address of the storage before passing it to the F$STrap 
system call. The size used by the kernel is calculated as R$Size-2 (70 bytes) 
- that is, no exception format and vector word is written to the stack frame. 
Before building the stack frame, the kernel checks that the user has write 
permission for the memory. If not, the process is terminated, with a stack 
overflow exit status (E$StkOvf).

The kernel then pushes the status register at exception and the address of 
the handler onto the system state stack, and so calls the handler by executing 
an rte instruction. The exception handler is called in user state (the state at 
the time of exception). It does not return to the kernel. The effect is as if the 
program had built the stack frame and jumped (not a subroutine call) to the 
handler routine, instead of executing the instruction that caused the 
exception.
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The handler routine is passed:
d7.1 = exception vector offset (exception number times 4)
aO.1 = program counter at exception
al.l = user stack pointer at exception
(a5) = register stack frame
a7.1 = a5.1 unless explicit stack frame space specified
66(a5) = program counter at exception (= aO)
64(a5) - status register at exception
60(a5) = user stack pointer at exception (= al)
0(a5) = d0-d7/a0-a6 at exception

The exception handler is effectively jumped to as a change of flow of control 
in the program. It must decide whether and how to continue execution of the 
program. It may decide that it can fix the problem, and allow the main 
program to continue execution. Having fixed the problem, the exception 
handler would restore the program's registers from the stack frame 
(including the condition codes register - ccr), restore the program's stack 
pointer (passed to the exception handler in the al register), and then jump 
back to the program, using the program counter passed in the aO register. 
Note that the program counter will not normally point at the instruction that 
caused the exception. Usually it will have been incremented by the processor 
to point at the next instruction, but for exceptions caused by a memory 
access (bus error and address error) the program counter may point part of 
the way through the instruction that caused the exception.

Alternatively, the exception handler may decide to continue execution at a 
different point in the program, or to terminate the program (perhaps 
preceded by a "clean up" sequence). Just as with a signal handler routine, the 
exception handler can execute any system calls - it is executing as a part of 
the program, in user state - but because it is called asynchronously, it must 
be careful not to use program variables that may be in use by the main body 
of the program.

The main concepts to understand in order to write a user state exception 
handler under OS-9 are:

• The exception handler is effectively asynchronously jumped to (not a 
subroutine call).

• The kernel builds a register stack frame below the given memory 
address, or on the user stack if no address was specified. The stack 
frame contains the data and address registers (including the stack 
pointer), the status register, and the program counter, as they were 
at exception.
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1 0.5.2 Example - Bus Error Handler

The "bus error” exception is probably the exception most commonly required 
to be intercepted by a program. A bus error exception occurs if the processor 
"bus error" input signal is asserted in response to a memory access, instead of 
the normal termination of a memory access. External circuitry on the 
processor board normally asserts the bus error input if a memory access 
attempted by the processor has not completed within a certain time, 
indicating that no device is responding to the address that has been put out 
by the processor.

The timeout depends on the processor board (and some boards have a 
programmable timeout), but a time of the order of 200 microseconds is 
typical. The timeout may occur because the address does not match the 
address of any device (memory chip or I/O interface chip) in the system, or 
because the device is currently busy, and refuses to respond. The bus error 
signal is also asserted by the Memory Management Unit (MMU) if one is in 
use (by the System Security Module, under OS-9), and a program tries to 
access a memory location that is not within its current memory map, or it 
tries to write to a location for which it does not have write permission.

A program that checks for the existence of an area of memory, or an I/O 
interface, will need to install a bus error exception handler, to handle the 
exception that will occur if the memory or interface chip is not present. Also, 
a program that directly accesses an I/O interface that is sometimes busy will 
need to install a bus error exception handler to retry an access to the 
interface. In the first case the program will not want to retry the instruction 
that caused the bus error - it will set a "device does not exist" flag. In the 
second case the program will want to retry the instruction, perhaps with a 
maximum number of attempts. This can be done by resetting the program 
counter to point again at the instruction, or by setting a flag and jumping to 
the end of a loop in the program to test for success or failure.

The example below shows a bus error exception handler for the first case. 
The program is attempting to determine whether an I/O interface chip is 
present at the given address in this system. The main body of the program is 
in C, but the function to make the F$STrap system call must be in assembly 
language, as must the exception handler (or at least a skeleton function). In 
this example the assembly language function probe byte attempts to read a 
byte from the given memory address. If it succeeds (no bus error), the 
function finishes in the normal way, returning the dO register set to zero. 
Otherwise, the exception handler is called, which sets the dO register to -1, 
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and jumps to the instruction in the probe_byte function following the 
instruction to set dO to zero.

#1nclude <std1o.h>
#1nclude <errno.h>
#1nclude <MACHINE/reg.h>

#def1ne ERROR (-1)

REGISTERS stack_frame; /* structure for stack frame */

int f_strap(),probe_byte(); /* declare functions *7

ma1n(argc,argv)
1nt argc;
char **argv;
(

char *check_addr;

/* The address to test is a command line parameter: */
if (argc!=2 || sscanf(argv[l],"Xx",&check_addr)1=1) 

exit(_errmsg(l,"Invalid board address\n"));
if (f_strap(&stack_frame)=ERROR) /* Install handler */ 

exit(_errmsg(errno,"Can't Install handler\n"));
/* Test for the existence of a device at the address given: */
1f (probe_byte(check_addr)=-l)

_errmsg(l,"No board at address X08x\n",check_addr);
else

_errmsg(l,"Board exists at address X08x\n",check_addr);
}
/* Function to Install bus error handler

Passed: address of stack to use (zero to use program stack)
*/
#asm
f_strap: movem.l dl/aO-al,-(a7) save registers

lea ExcpTbl(pc),al point at table of handlers
tst.l dO any stack given?
beq.s f_straplO . .no
addl.1 #R$S1ze-2,dO convert to pointer to top of stack

f_straplO movea.1 dO.aO copy top of stack address
os9 FJSTrap make the system call
bcs.s f_strap20 ..error
moveq #0,d0 show no error
bra.s f_strap30 ..and return

f_strap20 move.l dl,errno(a6) save error code
moveq #-l.dO show error occurred

f_strap30 movem.l (a7)+,dl/a0-al retrieve registers
rts return to C program

* Table of exceptions to handle, and handler offsets:
ExcpTbl dc.w T_BusErr,bus_hand-*-4

dc.w -1 end of table marker
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* Read a byte from a specified address:
* Passed: dO.l = address to test
probe_byte: move.l a0.-(a7) save register

move.l dO.aO copy address to use
move.b (aO),dO read byte

* The following Instruction 1s only executed 1f no
* bus error occurred:

moveq #0,d0 show no bus error

probe_bytelO 
movea.l (a7)+.a0 retrieve register
rts return to C program

* Bus error handler:
bus_hand: movea.l al,a7 restore stack pointer

movem.l (a5),d0-d7/a0-a4 restore regs from stack frame 
movea.l R$a5(a5),a5 restore a5 from stack frame 
moveq #-l.dO show bus error occurred
bra.s probe_bytelO ..finish off

#endasm

In the more generalized case, where the bus error exception could occur in 
more than one place (for example, separate functions might be used to try 
reading a byte, or a word, or a long word), the program could set a static 
storage variable to indicate which function is executing, or the program could 
save in static storage the program address at which to continue execution 
after a bus error.

10.5.3 'move from sr' and 'move from ccr'

The move from sr (copy the status register) instruction is not a privileged 
instruction on the 68000/010, and these members of the 68000 family do not 
have a separate move from ccr (copy the condition codes register) 
instruction. In contrast, the higher members of the 68000 family 
(68020/030/040) have a move from ccr instruction, and on these processors 
the move from sr instruction is privileged - a "privilege" exception occurs if 
this instruction is executed in user state.

In order to be compatible with both groups of processors, the kernel checks 
the "illegal instruction" and "privilege" exceptions, to see if they are due to a 
move from ccr or move from sr instruction respectively. If so, the kernel 
emulates the instruction, by moving the ccr register to the destination 
specified in the instruction, rather than passing the exception to the process's 
exception handler (or terminating the process if it has no handler). This 
makes programs written with either instruction execute correctly on both 
groups of processors.
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10.5.4 Hardware Exceptions in System State

The processor is in supervisor state during the execution of a system call, a 
system state program, a system state trap handler, or an interrupt service 
routine. When a hardware exception occurs in system state, the kernel 
handles the exception in a different manner from a hardware exception in 
user state.

A hardware exception during interrupt handling (which is always in system 
state) is considered a special case. If the hardware exception occurs during an 
interrupt service routine (the D IRQFlag field in the System Globals is not 
negative), the operating system gives up through a controlled system crash. 
It prints a "System state exception" message on the system console (reporting 
the exception vector offset), and attempts a soft reset (jump to the bootstrap 
ROM entry point). If a ROM-based debugger is available, the kernel calls the 
debugger, rather than jumping straight to a soft reset. The kernel "crashes" 
the system because it cannot know whether the interrupt has been 
successfully handled, or whether the I/O device is now in a non-functional 
state, with further use possibly resulting in a corruption of a filing system.

Therefore if an interrupt service routine anticipates that it may cause a 
hardware exception, it should temporarily patch the exception jump table 
before executing the instruction that may cause the exception. This is a 
perfectly valid mechanism - it cannot cause conflict, because interrupts are 
handled in a purely hierarchical prioritized order (this is a function of the 
processor) - they cannot sleep or be switched out.

If the processor is not executing an interrupt handler at the time of the 
system state exception, the kernel attempts to call a system state exception 
handler for the current process. Like the user state exception handlers, the 
address of the exception handler and the address of the stack to use are held 
in the process descriptor, so separate exception handlers can be set for each 
process. This allows a process to go to sleep without having to save and 
restore the handler address and stack pointer. Unlike the user state 
exception handlers, there is only one system state hardware exception 
handler address field in the process descriptor (P$ExcpPC) for handling all 
system state hardware exceptions, and only one field for the stack pointer to 
use at exception (P$ExcpSP).

If the stack pointer field (P$ExcpSP) of the process descriptor of the current 
process is zero the kernel gives up through a controlled system crash, as 
described above. This is the default case while executing a system-state 
process or system-state trap handler. Otherwise the kernel loads the a7 
register (the stack pointer) with the value in the P$ExcpSP field of the 
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process descriptor, unmasks all interrupts, and jumps to the address given in 
the P$ExcpPC field.

When called to execute a system call (trap #0 instruction) the kernel installs 
a default exception handler, which simply returns the exception as an error 
to the caller. The error code is the exception number plus 100. The kernel 
restores the original handler (usually "none") before returning to the caller.

However, the I$Attach system call routine temporarily installs its own 
exception handler before calling the initialization routine of the device 
driver, such that an exception is treated as an initialization error (returning 
an error code of 100 plus the exception number). This causes a program to 
get an error E BUSERR if it attempts to open a path to a device for which 
the hardware is not present. In addition, the device driver has the 
opportunity to de-allocate any allocated resources, because its termination 
routine is called by the I$Attach system call, as happens if the initialization 
routine returns an error in the normal way.

Any system state routine can intercept hardware exceptions by temporarily 
replacing the stack pointer and exception handler fields in the process 
descriptor of the current process. On exception, the kernel jumps to the 
exception handler address, effectively causing an asynchronous change of 
flow of control in the system state routine that caused the exception. The 
handler is called as follows:

dl.w = exception number plus 100 
d2-d6/al-a3/a5 = registers at exception 
d7.1 - exception vector offset
(a4) - current process's Process Descriptor
(a6) = System Globals
a7.1 = value taken from PSExcpSP 
sr - Interrupt mask 1s clear

Registers d0-dl/d7/a0/a4/a6 and ccr are lost. Note that the kernel does not 
place any parameters on the stack. The example below shows a system state 
routine recovering from a bus error:

* The address of the location to test 1s passed 1n the dO register:
ProbeByte: movem.l dl-d2/a0,-(a) 

move.l P$ExcpPC(a4),-(a7) 
move.l P$ExcpSP(a4),-(a7) 
lea ProbeBytelO(pc),a0 
move.l aO,P$ExcpPC(a4) 
move.l a7,P$ExcpSP(a4) 
movea.l dO.aO 
moveq #-l.d2 
tst.b (aO)

* The next Instruction 1s only executed

save registers 
save current values

build recovery PC 
set recovery PC 
and stack pointer 
copy the address to test 
default to bus error occurred 
test the memory location 
1f no exception occurred:
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moveq #0,d2 no bus error
ProbeBytelO move.l (a7)+, P$ExcpSP(a4) restore old values

move.l (a7)+,P$ExcpPC(a4)
move.l d2,d0 copy the result
movem.l (a7)+.dl-d2/a0 retrieve registers

* The dO register now contains 0 1f no bus error (or other hardware
* exception) occurred, otherwise It contains -1. 

rts

10.6 INTERRUPTS

10.6.1 How 68000 Interrupts Work

An interrupt is an external signal to the processor requesting the 
asynchronous execution of a subroutine, known as an interrupt handler. In 
general, interrupts are generated by I/O interface chips when they require 
servicing by the processor - for example, when a serial port interface has 
received a character. The 68000 family processors respond to an interrupt by 
an exception, allowing the interrupt handler to be executed in supervisor 
state, and afterwards the interrupted program to continue execution. These 
processors do not provide just a single interrupt input signal. Instead, they 
have a 3 bit binary coded input. This is generated by an external priority 
encoder chip, that takes 7 interrupt inputs (numbered 1 to 7), and outputs 
the 3-bit binary value indicating the number of the highest active input. If 
no input is active, the priority encoder generates a code of zero, meaning no 
interrupt handling is currently required.

This mechanism provides a prioritized system of seven levels of interrupts. If 
the input interrupt code exceeds the current interrupt mask value in the 
processor's status register, the processor initiates exception processing of the 
interrupt, with a special memory access cycle known as an interrupt 
acknowledge cycle. The processor (having saved the current status register, 
as in all exceptions), also sets the interrupt mask in the status register to 
equal the level of the interrupt being serviced. Thus, until the interrupt 
handler finishes, any other interrupt on the same or a lower level is ignored, 
but a higher level interrupt can cause a further exception, interrupting the 
interrupt handler of the lower level interrupt. Note that it requires a 
privileged instruction to change the interrupt mask in the status register (as 
with any part of the high byte of the status register word), so user state 
programs cannot mask interrupts.

Interrupt level 7 is a special case. Setting the interrupt mask to 7 does not 
prevent the processor responding to a level 7 interrupt, making such 
interrupts "non-maskable". Note, however, that because the processor only 
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starts interrupt processing if the interrupt level goes above the interrupt 
mask, or the interrupt mask is lowered below the current interrupt level, if 
the interrupt handler completes without clearing the level 7 interrupt, and 
the interrupt mask restored by the rte instruction at the end of the handler 
is 7, a further exception is not taken.

The processor must have some means of determining which device caused 
the interrupt, because most systems will have more than one device 
generating an interrupt. Simple processors require that software poll the 
status register of all devices that may be interrupting, to see which is 
currently generating an interrupt. However, the 68000 family processors can 
take distinct exceptions for different interrupt sources, by using separate 
interrupt exception vectors. These processors support two methods by which 
the interrupt vector is generated.

The first method is known as normal vectoring. The device (or some 
associated circuit) that is generating the interrupt responds to the interrupt 
acknowledge cycle by returning a vector number. The second method is 
known as auto-vectoring. This allows the use of devices that cannot 
themselves return a vector number. External circuitry detects that the 
interrupting device is of this type, and asserts an "auto-vector" input signal 
to the processor in response to the interrupt acknowledge cycle. The 
processor then generates the vector number internally, by adding 24 to the 
level of the interrupt. For example, a level 3 auto-vector interrupt generates 
a vector of 27.

10.6.2 Using Interrupts Under OS-9

For compatibility with all members of the 68000 family, and with most I/O 
devices, vector numbers are limited to 8 bits. Most devices will allow any 
vector number to be programmed into their interrupt vector register, to be 
used in response to a future interrupt acknowledge cycle. However, Motorola 
have reserved vector numbers 0 to 63 for other types of exception (including 
auto-vectored interrupts). Therefore 192 vector number are available for 
normal vectored interrupts, and 7 for auto-vectored interrupts, making a 
total of 199 interrupt vector numbers.

Most systems will use only a few of these vectors, and some will use the same 
vector for more than one device. This is particularly true of auto-vectored 
interrupts, as only 6 maskable levels are available, but it should be avoided 
with normal vectored interrupts. Therefore OS-9 provides a simple 
mechanism to allow any number of interrupt handlers to be installed on any 
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number of vectors, without absolutely requiring that any handlers be 
installed at all (the kernel has a default handler for unexpected interrupts).

In accordance with the OS-9 philosophy of dynamic configurability, 
interrupt handlers are installed when needed, and removed when no longer 
required. The F$IRQ privileged system call is used to install an interrupt 
handler. The caller passes the address of the handler, the address of the 
static storage to be used by the handler, a "port address”, the interrupt vector 
number, and a software polling priority value. Usually, an interrupt handler 
is part of a device driver. In this case, the static storage is normally the 
Device Static Storage, the "port address" is normally the base address of the 
registers of the interface chip, and the vector number and polling priority are 
taken by the device driver from the device descriptor.

The kernel maintains an "interrupt polling table". This is an array of 
structures, initially all free, which are used to link interrupt handlers to 
interrupt vectors. The size of the table - which is not dynamically 
expandable - is determined by an entry in the init configuration module. 
The F$IRQ system call searches for a free entry in this table, and stores the 
parameters there. The kernel then uses the vector number to select one of 
199 pointers in the System Globals. This pointer is the root of a linked list of 
polling table entries for that vector number. The kernel then searches the 
linked list, which is sorted by the software polling priority value - a low 
value means the entry is placed nearer the start of the list. It inserts the new 
entry after all entries with a lower or equal software polling priority. If the 
root pointer was null (zero), the kernel knows that the linked list for the 
given vector number was empty, and makes the new entry the first entry in 
the linked list, placing its address in the root pointer.

A software polling priority of zero is a special case. It is used to ensure that 
the handler is the only handler on the given vector number. If there is 
already a handler installed (the root pointer is not null), the caller is 
returned an error - E$VctBsy. If an F$IRQ system call attempts to install a 
handler on a vector which already has an entry of software polling priority 
zero, it is returned the same error. This mechanism is necessary to ensure 
correct support for some devices that have no status flag to indicate that they 
are generating an interrupt. The only way of knowing that it is this device 
that is interrupting is by the unique vector number returned by the interrupt 
acknowledge cycle.

The F$IRQ system call is also used to remove an interrupt handler from the 
polling table. The caller passes zero in place of the interrupt handler address. 
The kernel again uses the given vector number to identify the appropriate 
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root pointer. It then searches the linked list for that vector until it finds an 
entry whose static storage pointer matches that passed to the F$IRQ 
routine. Having found the correct entry, the kernel unlinks it from the 
linked list, and marks it as free for use by a subsequent F$IRQ call to install 
a new handler. This has the corollary effect that two interrupt handlers must 
not be installed on the same vector with the same static storage address. 
However, this is not a restriction, as there are almost no circumstances 
imaginable where a programmer would wish to do this.

Also note that two devices using different interrupt levels should not use the 
same interrupt vector. Otherwise, as the kernel calls each handler in the 
linked list for the vector in turn, an interrupt handler could be called 
recursively.

The interrupt polling table structure is described in more detail in the 
chapter on the OS-9 Internal Structure.

The kernel has a single "core" interrupt handler, and the exception jump 
table entries (see below) for all of the interrupt exceptions jump to this 
interrupt handler. The core handler uses the vector offset pushed on the 
stack by the jump table entry to select the appropriate root pointer for this 
interrupt exception number. It then calls each handler in the linked list in 
turn, passing the static storage and port addresses as specified in the F$IRQ 
call, until a handler returns the carry flag clear, indicating that the handler 
has recognized and serviced the interrupt. Finally, the kernel returns from 
the exception, using the rte instruction. Note that if the interrupt occurred 
while the processor was executing in user state, the kernel first performs its 
"return to user state" checks on the current process, such as whether the 
process is now marked as "timed out". This permits functions such as task 
switching after a clock tick interrupt, and the calling of the process's signal 
handler routine if the process is sent a signal by an interrupt handler.

If there is no handler for the interrupt vector (the root pointer is null), or all 
handlers on the vector return the carry flag set, the kernel increments the 
byte field D UnkIRQ ("unknown interrupt request") in the System Globals, 
and then returns from the exception. If the interrupt persists the kernel's 
interrupt handler will be called again, and the count will eventually roll over 
to zero (after 256 attempts). When this happens the kernel masks interrupts 
up to the level of the offending interrupt, preventing the processor from 
responding to the interrupt again. The D_UnkIRQ field is cleared whenever 
any interrupt is successfully processed. This is a measure to protect against 
hardware glitches in the external interrupt circuitry - normally an 
unrecognized interrupt is fatal for any system.
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Note that unless bit zero of the first compatibility byte in the init 
configuration module is set, the kernel only saves the registers 
d0-dl/a0/a2-a3/a6 on interrupt, to speed up the response to the interrupt. 
Therefore interrupt handlers that use other registers must save and restore 
them. The current version of the C compiler generates code that preserves all 
of the data and address registers not preserved by the kernel, including any 
floating point unit (FPU) data registers. However, if the interrupt handler 
does use the FPU, it must save and restore the FPU context, as an interrupt 
can break into an FPU instruction:

IRQSvc tst.b D_68881(a6) does the system have an FPU?
beq.s 
fsave

IRQSvclO 
07)

. .no
save FPU context

fmovem. 1fpcr/fpsr/fp1ar. -07) save FPU control registers
IRQSvclO bsr 

move
IRQSvcMain 
sr.dO

service the Interrupt 
save carry flag

tst.b 
beq.s

D_68881(a6)
IRQSvc20

does the 
. .no

system have an FPU?

fmovem.1(a7)+,fpcr/fpsr/fpiar
frestore(a7)+ restore

restore control registers 
FPU context

IRQSvcZO move 
rts

dO.sr restore carry flag

An interrupt handler terminates with an rts instruction, not an rte 
instruction. This is because the handler is returning to the kernel's core 
interrupt handler, which itself executes the rte instruction to finish the 
exception processing.

During interrupt processing the kernel switches to a different stack - the 
interrupt stack - to avoid the need for stack to be reserved for interrupt 
processing in the system state stack of every process descriptor. The size of 
the interrupt stack (which is not dynamically expandable) is specified in the 
init configuration module. The kernel's interrupt handler saves the system 
stack pointer, and then increments the D_IRQFlag field of the System 
Globals. This field is initialized to -1 during the kernel's coldstart. If it is 
now zero, the kernel knows that this interrupt is not breaking into the 
service of another interrupt (which will have already switched to the 
interrupt stack), so it switches to the interrupt stack by loading the a7 
register from the D_SysStk field of the System Globals. At the end of the 
interrupt service the kernel decrements the DIRQFlag field, and restores 
the original stack pointer.

Because an unrecognized (and therefore unserviced) interrupt is potentially 
fatal for the system, interrupt handlers must not be subroutines in modules 
that can be unexpectedly terminated (such as trap handlers, and user state 
programs), and must not use static storage that can be unexpectedly 
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de-allocated (such as program or trap handler static storage). Therefore only 
operating system components should contain and install interrupt handlers. 
The use of interrupts within device drivers is explained in the section on 
"Device Drivers".

10.6.3 Interrupts OS-9 Cannot Handle

Because OS-9 only maintains root pointers for the 199 normally expected 
interrupt exception vectors, there are two types of interrupt exception that 
OS-9 cannot handle. The first is the case in which a device returns an 
interrupt vector (in response to an interrupt acknowledge cycle) that is not in 
the range 64 to 255. This should never happen. It indicates that there is a 
hardware fault, or that the device has been programmed with an improper 
vector by the device driver. If the vector corresponds to the vector for a 
different type of exception (such as an illegal instruction), the kernel will act 
as if that exception had occurred - it has no way of knowing that in fact an 
interrupt generated the exception.

If the exception occurred in user state and the vector does not match any 
known exception vector, the kernel kills the current process, giving it an exit 
status of 100 plus the exception vector number. If the exception occurred in 
system state the kernel treats it like a normal "hardware" exception in system 
state (see above).

This generation of an invalid vector may happen for certain devices that, on 
reset, set their interrupt exception vector register to a value of 15 - the 
68000 "uninitialized interrupt" vector. If such a chip is then programmed to 
generate an interrupt without first writing a valid vector number to its 
interrupt exception vector register, OS-9 will be unable to handle the 
interrupt.

The second type of interrupt that OS-9 cannot handle is the Spurious 
Interrupt exception (vector 24). This exception is taken by the processor if 
the Bus Error input signal is asserted in response to the interrupt 
acknowledge cycle. Usually this is because no device has responded to the 
interrupt acknowledge cycle, so the memory access timeout circuit on the 
processor board asserts the Bus Error signal. This happens on VME systems 
and other bus based systems that use a daisy-chained interrupt acknowledge 
signals if the backplane jumper that by-passes the daisy chain for a 
particular backplane slot is left out when the slot is empty. If a board further 
down the backplane generates an interrupt, it will not receive the interrupt 
acknowledge signal from the processor board (because the daisy chain is 
broken by the empty slot and the missing jumper), and so will not respond.
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The timeout circuit on the processor board eventually times out, and asserts 
the Bus Error signal.

Although OS-9 has a root pointer in the System Globals corresponding to 
the Spurious Interrupt exception vector (which is equivalent to an 
auto-vector of level zero - 24), the F$IRQ system call will not permit a 
handler to be installed on this vector, and the exception jump table entry for 
this exception jumps to the kernel's "hardware" exception handler. The 
kernel handles the exception as described above for invalid interrupt vectors.

However, the interrupt from the interrupting device has not been 
acknowledged or serviced, so the interrupt signal remains asserted, and a 
further exception is taken once the interrupt mask is cleared (either 
explicitly by the kernel in its handler for hardware exceptions in system 
state, or implicitly by the rte "return from exception" instruction). Therefore 
the system will "hang", or - if the interrupt occurred (at a higher level) while 
another interrupt was being serviced - the kernel will give up through a 
controlled system crash. In the latter case the exception is recognizable 
because the system state exception message reports the exception vector 
offset for a Spurious Interrupt exception - $0060.

10.6.4 The Level 7 Interrupt

As mentioned above, a level 7 interrupt is non-maskable. Therefore it should 
never be used for normal interrupt handling, as the main body of the module 
(such as a device driver) initiating the interrupt cannot mask interrupts 
while manipulating variables or device registers also used by the interrupt 
handler.

Similarly, a level 7 interrupt handler must not make any system calls, as the 
kernel cannot protect its data structures by masking the interrupt.

If one of the Microware ROM-based debuggers is installed, the vector for 
auto-vector level 7 in the exception vector table is set to point to a handler in 
the debugger, rather than to the kernel's core interrupt handler. Many 
processor boards provide a front panel "abort" switch that generates a level 7 
auto-vector, so this facility can be used to call the ROM-based debugger in 
the event that the system "hangs", in order to try to determine why the 
"hang" occurred. Therefore, if the level 7 auto-vector is to be used for some 
other purpose (such as processor emulation of DMA), the exception vector 
table entry for auto-vector level 7 must be overwritten, unless it is certain 
that no ROM-based debugger will be used.
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10.7 THE EXCEPTION VECTOR TABLE
The processor selects which handler routine to call on exception by using the 
exception number as an index into a table of addresses, known as the 
exception vector table. Because there are 256 possible vector numbers, the 
table is 256 long words in length - that is, Ik bytes. The first entry 
(corresponding to vector zero) is reserved for the address to load into the 
stack pointer on reset, and is used in OS-9 to point to the System Globals. 
The 68000 processor always locates the exception vector table at address 
zero, while the 68020/030/040 have a vector base register (vbr) that gives the 
address of the table. The vbr is set to zero when the processor is reset, but 
may be re-programmed by the bootstrap ROM (the OS-9 kernel does not 
write to this register).

The reset vector and reset stack pointer values must be in ROM, so that they 
are present on power-on. However, it is also convenient to have the 
exception vector table in RAM, so that it can be dynamically modified. 
Processor boards address this dichotomy in a number of different ways:

a) The exception vector table is in ROM, at address zero, and 
cannot be modified. It is part of the bootstrap ROM. The 
system RAM starts at some other address.

b) The system RAM is mapped to start at address zero, but the 
first two long words are overlaid by a reflection of the first 
two long words of the ROM. The reset vector and reset stack 
pointer are fixed, but the other vectors are dynamically 
modifiable.

c) The system RAM is mapped to start at address zero, but is 
overlaid by the ROM on reset. Either the termination of the 
reset cycle, or an explicit processor board register write, 
causes the ROM reflection to disappear. The vectors are then 
dynamically modifiable.

d) The ROM is mapped to start at address zero, and contains the 
reset vector and reset stack pointer. However, the processor 
contains a vector base register, so the exception vector table 
can be relocated to any part of the system RAM.

If the exception vector table is in ROM only, it forms the first part of the 
bootstrap ROM, and cannot be modified. Otherwise, the bootstrap program 
builds the exception vector table in RAM. Each entry in the exception vector 
table (except the reset stack pointer and reset vector) points to the 
corresponding entry in the exception jump table (see below). However, as 
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described above, if the bootstrap ROM contains one of the ROM-based 
debuggers, then the bus error, address error, illegal instruction, and 
auto-vector level 7 interrupt exception vectors point to handlers in the 
debugger. Because the kernel must support all types of system, it does not 
attempt to modify the exception vector table. Instead, it assumes that the 
table entries point to the appropriate entries in the exception jump table, and 
writes the addresses of its handlers in the exception jump table.

If it is known that the exception vector table is in RAM, a vector may be 
overwritten to cause the exception to call a user-installed handler directly. 
This by-passes all the kernel mechanisms (such as the use of the interrupt 
stack) and protections, and so is not recommended by Microware, but gives a 
slightly faster interrupt response that may be necessary in some critical 
applications.

10.8 THE EXCEPTION JUMP TABLE
The exception jump table is needed for two reasons. Firstly, the 68000 does 
not save a record of which exception is being serviced. Although the higher 
members of the family do (the exception processing pushes the exception 
number on the stack), OS-9 must be compatible with all members of the 
family. Secondly, the exception vector table may be in ROM, so the vector 
addresses cannot be modified, yet the bootstrap ROM cannot know the 
addresses of the kernel's exception handlers. Therefore each exception vector 
points to its own entry in the exception jump table. Each entry in the 
exception jump table consists of an instruction to push the exception vector 
offset onto the stack, followed by an absolute jump instruction, which jumps 
to the exception handler. The first two entries in the exception vector table 
(reset stack pointer, and reset vector) do not need corresponding exception 
jump table entries, so the first entry is for exception number 2 (bus error). 
Therefore if the exception jump table is disassembled, the first few 
instructions look like this:

pea $0008. w
Jmp Sxxxxxxxx.l
pea SOOOC.w
jmp $yyyyyyyy.i
pea $0010.w
jmp $zzzzzzzz.l

The kernel builds the exception jump table as part of its coldstart routine. 
The entries in the table are each 10 bytes, so the table is 2540 bytes in size. 
Its start address is usually 4k below the address of the System Globals, but to 
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allow for variations in the size of this memory area the kernel writes the 
jump table base address to the DExcJmp field of the System Globals12.

12 The 'CBOOT' and ROMBug options for the boot program from OS-9 version 2.4 onwards 
may allocate static storage that increases this memory area above 4k bytes.

The exception jump table is always in RAM, so an operating system 
component that wishes to permanently or temporarily redirect an exception 
to its own handler can overwrite the jump address (the last 4 bytes) in the 
corresponding jump table entry. If the change is to be temporary, the routine 
should save the current address, set its own address, perform the function 
that might generate the exception, and then replace the original address of 
the kernel's handler. This strategy also allows this method of redirection to 
be nested. For example, a high level interrupt handler could temporarily 
redirect the bus error vector, even though this interrupted a similar attempt 
by a low level interrupt handler. The example below temporarily replaces the 
bus error handler while accessing an I/O device register:

move.1 0_ExcJmp(a6),a0 get address of Jump table
* Each entry 1s 10 bytes, and the Jump address 1s the last long word
* of the entry. The first entry is for exception 2. Bus error 1s
* exception 2: 

adda.w (2-21*10+6,aO point at Jump address for bus error
move.l (a0).-(a7) save the Jump address
lea BusError(pc),al point at our handler
move.l al,(a0) set the new Jump address
move.l a7,dl save the stack pointer
moveq #-l,d0 default to "bus error occurred"
move.w (a3),d2 the instruction that may cause a

★ bus error
* The next Instruction is only executed if no bus error occurred:

moveq #0,d0 show "no bus error"
BusError movea.l dl,a7 restore the stack pointer

move.l (a7)+,(aO) restore the original Jump address
tst.l dO did a bus error occur?

As with overwriting the exception vector table, this mechanism should only 
be used when strictly necessary, but it is available when needed.

231



EXCEPTION HANDLING

232


	CHAPTER 10
EXCEPTION HANDLING
	10.1 EXCEPTION HANDLING UNDER OS-9
	10.2 USER AND SYSTEM STATE RETURN
	10.3 SYSTEM CALLS - TRAP #0
	10.4 TRAP HANDLER MODULES - TRAPS #1 TO #15
	10.4.1 The Trap Handler Routine
	10.4.2 Installing Trap Handlers
	10.4.3 Terminating Trap Handlers
	10.4.4 Writing a Trap Handler in C

	10.5 HARDWARE EXCEPTIONS
	10.5.1 Hardware Exceptions in User State
	10.5.2 Example - Bus Error Handler
	10.5.3 'move from sr' and 'move from ccr'
	10.5.4 Hardware Exceptions in System State

	10.6 INTERRUPTS
	10.6.1 How 68000 Interrupts Work
	10.6.2 Using Interrupts Under OS-9
	10.6.3 Interrupts OS-9 Cannot Handle
	10.6.4 The Level 7 Interrupt

	10.7 THE EXCEPTION VECTOR TABLE
	10.8 THE EXCEPTION JUMP TABLE


