
OS-9 - THE OPERATING SYSTEM

CHAPTER 1

OS-9 - THE OPERATING SYSTEM

1.1 WHAT IS AN OPERATING SYSTEM?

OS-9 is an operating system. The name is an abbreviation of 
"Operating System for the 6809 microprocessor". OS-9 was 
originally written by Microware under contract to Motorola, who 
wanted to demonstrate that the 6809 microprocessor was 

sufficiently powerful to be the heart of a true computer. OS-9/6809 is 
therefore owned jointly by Microware and Motorola. OS-9/6809 was very 
popular in its own right, and was used on a number of different high-volume 
home and educational computers. Microware later rewrote OS-9 for the 
68000 family of microprocessors, and it is in this form that OS-9 has reached
its current very wide popularity on the industrial market. But what is an 
operating system?

Depending on your viewpoint as a user, you might see it as one or more of 
the following:

• The kernel of software that gets the computer going.

• The user interface and command interpreter.

• A provider of a basic I/O interface for the user.

• A set of functions for applications programmers.

• A core of standards and documentation for applications programmers.

• A set of philosophies for programmers.

An operating system will (usually) provide all of these things. But these are 
features as seen from the point of view of a user. To appreciate what an 

1



OS-9 - THE OPERATING SYSTEM

operating system does we must look at it from a system designer's viewpoint. 
A computer consists of electronic hardware - central processing unit (CPU - 
the processor), memory, disk drives, displays, keyboards, printers, and so on. 
The user wants to run applications programs to carry out specific tasks, 
such as a word processor, spreadsheet, or language compiler. Somewhere 
there must be software that controls and manages these "hardware 
resources". This software could be in the application program. However, that 
has very important disadvantages:

• The software must be present in every program.

• Programs are not "portable" to computers with different hardware.

• The computer cannot run multiple programs concurrently, as they 
will clash in their use of hardware resources.

An alternative approach is to use an operating system. The operating system 
is a body of software that provides functions to allocate and manage the 
hardware resources. It divides up the processor time between multiple 
programs running concurrently, allocates memory to programs as they need 
it, and arbitrates between programs trying to use the same input/output (I/O) 
device.

In addition, the operating system provides software to implement commonly 
required functions, such as disk file management. This provides standards 
for programmers, and significantly reduces the work required to write 
applications programs.

The operating system is not a program in itself. It provides functions for use 
by programs. But the operating system vendor will usually also provide a set 
of commonly required programs for general system maintenance, such as file 
copying, deleting, and display. These programs are known as "utilities".

1.2 WHY IS AN OPERATING SYSTEM IMPORTANT?
Many companies have in the past elected to write their own operating 
systems, in the belief that this gives them greater control over the 
functionality of the operating system, and a fuller understanding of all the 
functions.

In reality, however, real time kernels, executives and operating systems 
written in house "re-invent the wheel" (creating techniques and software 
already available for purchase), take a great deal of support and 
documentation, and are vulnerable to the departure of key personnel.

2



OS-9 - THE OPERATING SYSTEM

The learning curve for this type of project is usually very long, unless 
programmers with particular "systems programming" experience are hired. 
An operating system requires very different programming techniques and 
philosophies from those of applications programming.

There are other advantages to using a bought-in, widely used operating 
system. A known, documented, and fixed environment simplifies large 
projects, and new generations of applications. Additional functionality to 
simplify the applications programming is likely to be available, because a 
generally accepted operating system available on a wide range of hardware 
promotes the development of third-party software products and 
documentation. It also gives long-term confidence to manufacturers and 
users.

1.3 WHAT IS MULTI-TASKING?
A multi-tasking operating system is one which provides for the concurrent 
running of multiple programs. As the processor of a computer can only run 
one program at a time, multi-tasking is achieved by running one program for 
a short time (perhaps 20 milliseconds), stopping it (saving its state so it can 
be restarted later), starting the next program, and so on. Provided the time 
interval - known as a "time slice" - is short enough (whether it is will depend 
on the application), this gives the illusion of running the programs 
concurrently.

There are two (very different) uses of a computer for which multi-tasking is 
very important. The first is a multi-user system. This is a computer system 
which has multiple users working on it (on different terminals!) at the same 
time. Each user is running his own program independently of the others - 
the application programs do not interact with each other.

The second use is a multi-tasking application. Here multiple programs work 
together to implement a single application. This is how most computer-based 
industrial and domestic products work. For example, one program handles 
the operator interface, while a second program collects data from sensors, 
and a third program communicates with a central factory computer. This 
multi-tasking approach is very important. It allows each program to 
concentrate on a single job, without having to "poll" (check) frequently to 
determine whether other jobs need doing - they will be done concurrently by 
the other programs.

In a multi-tasking application the programs must work together to perform 
the overall job. This requires the passing of data between the programs. It 

3



OS-9 - THE OPERATING SYSTEM

also requires synchronization between the programs. For example, one 
program must not continue its job until another program has collected data 
for it. These functions of synchronization and data transfer are known as 
inter-process communication. Correct use of these functions is essential to 
the writing and working of a multi-tasking application.

1.4 PROGRAMS IN ROM
Computer-based products vary widely in their complexity and cost. A 
product may have a powerful processor, with disk drives, high-quality 
displays, and a networking connection to other computers. Or, it may be a 
low cost, "embedded" product, with no operator interface or disk drives.

If the system has no disk drives (or other suitable storage medium), the 
operating system and all of the programs must reside in ROM. Therefore the 
capability for the operating system to be ROMmed (placed in ROM), and to 
support programs in ROM, is essential to low-end applications.

Traditionally this group of applications has been serviced by "real time 
kernels" (not to be confused with the OS-9 "kernel" module!) or "executives". 
These differ from an operating system in that the programs and real time 
kernel are all linked together to make one software package, which is then 
typically ROMmed. In general, new programs are not dynamically loaded and 
run. Also, traditionally a real time kernel does not automatically share out 
the time of the processor between the multiple programs of the application. 
Instead, programs are assigned a priority, and the highest priority program 
runs until it asks to be suspended.

This approach produces a final software package that is (in general) 
somewhat smaller, and (because the real time kernel offers less functionality) 
perhaps a little faster. However, development and debugging are more 
difficult, and more complex applications cannot easily be implemented. So a 
ROMmable operating system is attractive, allowing one programming 
environment to be used for a very wide range of applications.

1.5 THE FUNCTIONS OF AN OPERATING SYSTEM
In the light of all the above "desirable features", we might therefore hope 
that an operating system would provide the following functionality (the 
terms used are explained in later chapters):

4



OS-9 - THE OPERATING SYSTEM

□ Management of system resources

• Memory

• processor time

• I/O devices

• Co-processors

• External events

• Inter-process communication mechanisms

• Inter-user protections

□ Provision of commonly required functionality

• Disk file handling

• Input line editing

• Program loading

• Date and time

• Terminal functions

• Process debugging

• I/O device control

• Multi-user management

• Utilities

□ Application program portability (hardware independence)

• Complete set of system functions (so the programmer never needs to 
access hardware directly)

• Standardized error numbering

• Device-independent I/O functions

□ Ease of system customization

• Modular operating system structure, especially I/O

• ROMmable operating system and programs

• Isolation of areas requiring customization

• Ease of new system build

• Independence of filing systems from hardware functions

5



OS-9 - THE OPERATING SYSTEM

□ Standardization of software and documentation

• Well-defined operating system functions

• Modular approach to system customization and extension

1.6 A COMPARISON OF OPERATING SYSTEMS
Having drawn up a long wish-list of functions for a hypothetical operating 
system, it is interesting to compare different well-known operating systems 
for their functionality - see figure 1 on the next page.

1.7 THE MAIN PROPERTIES OF OS-9
The list of features in figure 1 makes OS-9 appear very attractive. This is 
perhaps not so surprising. OS-9 was not written in a hurry. It was developed 
over a period of about three years by a small group of programmers at 
Microware under contract to Motorola (who therefore jointly own 
OS-9/6809). The programmers carefully considered existing operating 
systems (particularly UNIX), building on the good features of existing 
technology, but inventing new techniques wherever they saw the need.

This makes OS-9 one of the very few operating systems developed through a 
long-term project as a commercial product outside of a hardware 
manufacturer. As a result OS-9 implements almost all of the functions that 
might be wished of an operating system, in an elegant, straightforward way. 
Indeed, it is a good model for the academic study of a broad-spectrum, 
multi-tasking, real time operating system. This section summarizes the main 
properties of OS-9, with a brief description of how each is implemented.

1.7.1 Multi-tasking

Using a hardware timer (whatever is available on the particular system) to 
generate "tick" interrupts, OS-9 performs automatic time-slicing between 
any number of programs. In addition, OS-9 has several mechanisms to allow 
the advanced programmer to modify this "scheduling", even to change it to 
the non-automatic priority-only scheduling expected in a real time kernel.

1.7.2 Real Time

The term "real time" is often abused or misunderstood. It means that real 
world events are being processed as they happen. A real time system is one 
that must respond to an external event within a specified time. For example,

6



OS-9 - THE OPERATING SYSTEM

• Figure 1 - A comparison of operating systems

OS-9 UNIX MS-DOS

Multi-tasking Yes Yes No

Multi-user Yes Yes No

Real time Yes No No

Modular Yes No No

Broad spectrum applicability Yes No No

Large systems Yes Yes No

Single-user workstations Yes Yes Yes

Personal computers Yes No Yes

Home computers (diskless) Yes No No

Embedded industrial products Yes No No

Processors available Motorola 
Intel

Many Intel

Memoiy limitation None None 640k

Requires Memory Management Unit? No Yes No

ROMmable (and can operate diskless) Yes No No

Device-independent I/O system Yes Yes No

User-customizable I/O device drivers Yes No Yes

User-customizable I/O file 
management

Yes No No

User-customizable kernel Yes No No

Dynamically customizable Yes No No

Robust disk filing structure Yes No No

All versions generally compatible Yes No No

Associated with a hardware 
manufacturer

No Yes Yes

Accepted by major manufacturers Yes Yes Yes

Wide third-party 
software/documentation

No Yes Yes

Next generation standard Yes Yes No

7



OS-9 - THE OPERATING SYSTEM

an image processing system must process the image of one part before the 
next part on the conveyor belt comes along. If it cannot, then it has failed its 
function. Therefore the real time response time will vary from application to 
application, and between external events in the same application. It could be 
as much as five minutes, or as little as 500 nanoseconds.

A non-real-time system may also be specified to respond within a certain 
time, but it is not fatal if it does not. For example, an accounts computer may 
be specified to respond to an operator input within two seconds, but if it 
takes three seconds on occasion that is only an annoyance to the operator.

Computers respond to external events by polling or by interrupts. Polling - 
repeated testing for a condition - is relatively slow and uncertain - a 
program may take a while to perform a particular task before it is ready to 
poll again. An interrupt is a hardware signal to the processor. It causes the 
processor to suspend execution of the current program, and execute a 
separate function (called an "interrupt handler"). The interrupt handler 
carries out any tasks that require "immediate" attention, and/or sends a 
software signal to the program that wants to know about the external event. 
This would typically wake up the program, which would be in a suspended 
state waiting for the event.

Response by interrupt is therefore very much more efficient and reliable 
than response by polling, although it requires somewhat more initial 
learning and programming. A real time operating system must offer a way of 
adding new interrupt handlers, and mechanisms for interrupt handlers to 
communicate with programs. OS-9 has both. Also, interrupts are not very 
useful without multi-tasking, as the single program could not sleep, waiting 
for the interrupt - it would still need to poll to see if the interrupt had 
occurred. Therefore a real time operating system must also be multi-tasking 
(which OS-9 is).

1.7.3 ROMmable

The unique memory module mechanism of OS-9 (described later) makes the 
operating system and application programs inherently ROMmable. Also, 
there is no need to provide any information as to where in ROM the modules 
are - at startup the OS-9 kernel scans all the ROM areas to find all modules 
present in ROM, and builds a module directory indicating where they are. So 
modules can be placed in ROM in any order, and with gaps between them if 
desired. Once entered in the module directory, a module is located by its 
name, in a similar way to named files on a disk.

8



OS-9 - THE OPERATING SYSTEM

1.7.4 Modular

The operating system itself is separated into several memoiy modules. This 
allows very easy customization. If certain functionality (such as disk filing) is 
not required, that module is simply omitted. If additional functionality is 
required - even dynamically at run-time - additional modules (such as the 
Internet Support Package for Ethernet networking) can be loaded, and their 
functionality is immediately available.

1.7.5 Unified Device Independent I/O System

A device independent input-output (I/O) system is one in which the same 
basic functions - such as "open", "read", and "write" - are used by a program 
to access all types of I/O devices. This simplifies programming, and permits 
"redirection" - a program written to write to a terminal can have its output 
sent to a disk file without being modified in any way.

An operating system with a unified I/O system is designed to allow the I/O 
system to be easily customized, extended, or reduced. All I/O calls from 
programs go to the operating system kernel, the core functionality of the 
operating system which is present in all configurations. The kernel provides 
a common environment to manage the call, and passes it on to the 
appropriate subroutine within the operating system.

OS-9 has a particularly well structured I/O system. I/O calls go to the kernel, 
which then calls a file manager appropriate to the class of device (disk drive, 
tape drive, terminal, network, and so on). The file manager has the job of 
handling the logical data manipulation, such as the file handling on a disk. 
The file manager does not know how to access the physical device, and calls a 
device driver specific to that device whenever physical I/O is required (for 
example, reading and writing of sectors on the disk).

The kernel, file managers, and device drivers are all separate memory 
modules, so new device drivers can easily be added for new physical devices, 
and new file managers can be written for new classes of device.

1.7.6 Inter-process Communication Functions

OS-9 has several different inter-process communication functions available 
for use by application programs. They are discussed in detail in the chapter 
on "Inter-process Communication", as they are very important to the 
effective generation of multi-tasking applications.

9



OS-9 - THE OPERATING SYSTEM

1.7.7 High Performance

OS-9 was designed with execution speed and code size very much in mind, 
and so was written in assembly language. This makes it very well suited to 
even small, cost-sensitive products.

However, because OS-9 is written in 68000 family assembly language, it 
cannot be adapted ("ported") to other processor families. The greatly 
increased power of microprocessors, and reduced cost of memory, since OS-9 
was first written has reduced the need for the operating system to be as 
small and fast as possible. Therefore Microware has written a companion 
operating system - OS-9000 - in C, which can readily be adapted to 
different microprocessors. In particular, OS-9000 is available for most 80386 
and 80486 IBM PC compatible computers.

1.7.8 Adaptation to New Hardware

The modular arrangement of the I/O system and other parts of the operating 
system makes OS-9 very adaptable to new hardware, without the need for 
any of the source code of hardware-independent parts, such as the kernel.

The user can also customize the operating system, by adding or removing 
memory modules. This applies to all parts of the operating system - even the 
kernel can be adapted or extended, using "kernel customization modules".

1.7.9 Complete Set of Functions

It is very important that the programmer can always work within the 
operating system environment. He must not need to bypass the operating 
system and access hardware directly because of limitations of the operating 
system, as this reduces portability of the application, and can destroy the 
multi-tasking capability. OS-9 provides a full set of functions for the 
management and allocation of all resources, but it is not unnecessarily 
complex. Therefore the programmer can learn how to work within the 
operating system environment without too much effort (so he is much more 
likely to do so!).

Although OS-9 can be reduced for low-end applications, all of its functions 
are sophisticated enough to support top-end applications as well. For 
example, the disk file manager provides a full hierarchical directory 
structure, with almost unlimited file size, long file names (28 characters), and 
true record locking. Microware has additional file managers for a wide range 
of applications, such as graphics and networking, all equally sophisticated.

10



OS-9 - THE OPERATING SYSTEM

1.7.10 Broad Spectrum of Applications

OS-9 is suitable for a broader range of applications than perhaps any other 
operating system available. This comes from its modular, ROMmable 
construction, its full set of sophisticated functions (including multi-user 
support), and its relatively small size. OS-9 can be (and has been) used in 
small, diskless, embedded products, on large multi-user systems, and on 
everything in between, such as personal computers and home computers.

Microware is a wholly private company, and owes no allegiance to any 
hardware manufacturer. This makes OS-9 unusual, as most other popular 
operating systems are partly or wholly owned by a hardware manufacturer. 
So Microware's only aim is to develop and support OS-9 as a commercially 
attractive operating system. It cannot be coerced into making OS-9 less 
accessible, or into bending it to be more suited to particular uses and less 
suitable to others. And it cannot be shut down at the commercial whim of a 
parent company.

This gives much greater confidence to companies who commit to using OS-9. 
The operating system is the environment for the whole product. It is much 
easier to change hardware than to change operating system!

Perhaps surprisingly, given its relatively low market profile, OS-9 is one of 
the most popular and widely used operating systems in the world, and has 
sold many hundreds of thousands of copies. It has been used in high volume 
products - such as Fujitsu and Tandy home computers - and in high-tech 
products - such as the Space Shuttle control station.

1.7.11 The Future

OS-9 is already the most widely used real time operating system on Motorola 
microprocessors. The advent of Compact Disc Interactive (CD-I) may well 
make it the most popular operating system in all fields. CD-I - launched at 
the end of 1991 in the USA and Japan, and early in 1992 in Europe - is a 
standard developed by Philips in conjunction with Sony to use compact disc 
for the storage of audio, video, and computer data, as well as programs. The 
operating system in the player is OS-9 (under the name CD-RTOS), and all 
CD-I applications run under OS-9.

Philips, Sony, and most of the other major Japanese domestic electronics 
manufacturers are or will be producing CD-I players, and are hoping that 
CD-I will be as big as, or bigger, than audio compact disc. If so, every field 
will be open to OS-9, which could conceivably become the standard 

11



OS-9 - THE OPERATING SYSTEM

operating system in industrial products, home computers, personal 
computers, and workstations.

1.8 THE PARTS OF OS-9
OS-9 is a sophisticated operating system made up of several parts, and often 
supplied with accessory programs. This section summarizes these software 
components. Microware, and third-party software vendors, also supply a 
wide range of complementary software products.

1.8.1 Utilities

Microware license OS-9 in a number of guises, containing more or less of the 
operating system components and companion products. The programmer is 
most likely to be using Professional OS-9, which comes with a large set of 
utility programs, a C compiler, and the umacs screen editor. These are not 
part of the operating system itself, which is an environment for programs to 
run under. They are the basic programs that every programmer is likely to 
need in order to develop his software. Microware also sell additional utility 
programs for particular purposes, such as the C Source Level Debugger.

1.8.2 Language compilers

Professional OS-9 comes with a C compiler. Microware also have Pascal, 
Fortran, and Basic compilers. Third-party software suppliers offer compilers 
for other languages, such as Modula-2.

1.8.3 Kernel

The kernel module is the core of the operating system. It contains all of the 
system-independent functions, such as multi-tasking support and memory 
allocation. The kernel also provides the environment for all I/O calls to be 
serviced by the I/O system (which is composed of the file managers and 
device drivers).

1.8.4 File managers

The file manager modules perform the logical data processing part of an I/O 
call. For example, the maintenance of the filing structure on a disk, or input 
line editing on a terminal. In general, each file manager is suitable for a class 
of devices, such as disk drives, tape drives, or a network. The file managers 

12



OS-9 - THE OPERATING SYSTEM

do not know how to physically transfer data through an I/O interface. For 
this they make calls to the device drivers. OS-9 can support any number of 
file managers, and each file manager can work through any number of device 
drivers. This gives OS-9 a "tree structured" I/O system.

1.8.5 Device drivers

Each device driver module has the functions to control a particular I/O 
interface device, such as a disk controller chip, or a serial communications 
chip. The device driver does not know why it is requested to perform the I/O, 
and (in general) performs no data manipulation or interpretation - that is 
the job of the file manager that is calling the device driver.

This functional split between file managers and device drivers simplifies new 
implementations and customizations of OS-9. To add a new type of I/O 
interface which fits an existing class it is only necessary to write a new device 
driver. The device driver writer does not need to have any understanding of 
how the filing system works.

1.8.6 Device descriptors

Somehow the operating system must know what device a program is 
referring to, and must be able to select the appropriate file manager and 
device driver to manage the I/O request. OS-9 does this using memory 
modules known as device descriptors. These modules contain only data. They 
give the name of the device (equal to the name of the device descriptor 
module), the name of the file manager module, the name of the device driver 
module, and information about the hardware configuration (such as the 
memory address of the interface chip).

1.8.7 Program support modules (trap handlers)

Programs can access memory modules by name. A program makes a call to 
the operating system, passing the name of the desired module, and the 
operating system (having searched the module directory) returns the 
memory address of the module. Modules can therefore be used to store data, 
or sets of subroutines for use by programs.

OS-9 provides another way by which a program can call subroutines in a 
separate module, without having to determine the address of the module. 
These modules are known as trap handlers. The calling program informs the 
operating system of the names of the trap handler modules it wishes to use.

13



OS-9 - THE OPERATING SYSTEM

Then, when it wants to call one of the subroutines in the trap handler, it 
makes another operating system call, specifying the trap handler and the 
number of the function within the trap handler.

1.8.8 Customization modules

OS-9 is very customizable. It is even possible to customize the kernel. The 
user supplies an additional module containing functions to add to or replace 
the existing system calls. The name of the additional module (or modules - 
any number are permitted) is placed in the configuration data module init. 
On startup, the kernel finds all such modules, and calls their initialization 
functions. This allows the module to add new system calls or replace existing 
ones, so extending or modifying the functionality of the kernel.

1.9 SPECIAL FEATURES OF OS-9
OS-9 is an unusual operating system in many respects. It uses advanced 
techniques to allow it to address a very wide spectrum of applications 
effectively, and yet remain small. OS-9 also makes no demands regarding the 
hardware configuration it runs on. It can run programs with nothing more 
than a processor and some memory (although without some I/O a system 
cannot do anything useful!).

□ OS-9 modules

The OS-9 memory module concept is central to much of the flexibility of 
OS-9. It allows the operating system to be dynamically configurable, for 
programs and operating system components to be in ROM, and for programs 
to be held in memory even when not running. Programs can also use memory 
modules as common data pools, for inter-process communication.

□ Relocatable, re-entrant, ROMmable operating system and 
programs

Microware specifies that all programs (and operating system components) 
must be written relocatably (or "position independent"). This means that the 
program does not use any absolute program addresses. Instead, program 
accesses such as calls to subroutines are done relative to the current program 
counter, so the program module can be placed anywhere in memory without 
needing modification.

14



OS-9 - THE OPERATING SYSTEM

The 6809 and 68000 family processors are specifically designed to support 
this mode of programming, so it is not a restriction. As a result, OS-9 does 
not need any memory management hardware to translate memory addresses 
(this is done in other operating systems so that the program always logically 
lives at the address for which it was written).

Microware also specifies that programs must access their data memory 
"register indirect". That is, when a program is started the operating system 
sets one of the processor's registers to point to an area of memory that the 
operating system has allocated for the data memory of the program. The 
program then accesses its variables relative to this register. This allows 
programs to live in ROM, while having variables in RAM. It also permits 
multiple "incarnations" of the program to run concurrently. For example, 
several users can be using the umacs editor at the same time. Only one copy 
of the program exists in memory, but OS-9 allocates separate data memory 
for each incarnation (or "process"), so each functions independently of the 
others.

This type of program (where data accesses are all register indirect) is known 
as a re-entrant program. Again, the Motorola processors are designed to 
support this kind of addressing.

The language compilers all automatically generate position-independent, 
re-entrant code.

□ Tree-structured I/O system

The OS-9 I/O system is separated into file managers, device drivers, and 
device descriptors. This fragmentation of the I/O system into completely 
separate modules makes the OS-9 I/O system very customizable.

□ Dynamically modifiable I/O system

OS-9 is very unusual - its I/O system is dynamically modifiable while the 
system is running. New file managers, device drivers, and device descriptors 
can be loaded at any time. An I/O interface can be used in one way, and then 
used for a completely different purpose by loading a new file manager and/or 
device driver. A manufacturer of an I/O board can supply a device driver with 
it that can be loaded whenever the user wishes to use the board.

Not only does this add to the flexibility of the system, but it makes debugging 
new I/O system components very much easier, as the system does not have to 
be rebooted to test each revision.

15



OS-9 - THE OPERATING SYSTEM

□ Customization hooks throughout

OS-9 is intended for a very wide range of applications, many of which will 
have unique requirements. Microware have therefore made almost every 
aspect of OS-9 customizable - often in more than one way - by providing 
well defined mechanisms to modify or extend the operating system.

□ User interface is very similar to UNIX

Microware modelled the user view of OS-9 very much on UNIX. Users with 
experience of UNIX are therefore rapidly at home with OS-9 - although 
there are differences!

The programmer's view of OS-9 is also very similar to UNIX, especially at 
the C programming level. Most UNIX programs can be ported (at the source 
code level) to OS-9 with little or no modification.

□ Very regular utility command line syntax

The utilities provided by Microware all conform closely to the same 
command line syntax. Options are preceded by a and can be in any order 
anywhere on the command line. All utilities respond to the ("help") 
option, and common options are the same on different utilities - for example, 
'-z' is used to indicate that file names will come from standard input.

This significantly improves the user-friendliness of the operating system, 
and encourages third-party software suppliers to use the same syntax 
conventions.

16


	CHAPTER 1
OS-9 - THE OPERATING SYSTEM
	1.1 WHAT IS AN OPERATING SYSTEM?
	1.2 WHY IS AN OPERATING SYSTEM IMPORTANT?
	1.3 WHAT IS MULTI-TASKING?
	1.4 PROGRAMS IN ROM
	1.5 THE FUNCTIONS OF AN OPERATING SYSTEM
	1.6 A COMPARISON OF OPERATING SYSTEMS
	1.7 THE MAIN PROPERTIES OF OS-9
	1.7.1 Multi-tasking
	1.7.2 Real Time
	1.7.3 ROMmable
	1.7.4 Modular
	1.7.5 Unified Device Independent I/O System
	1.7.6 Inter-process Communication Functions
	1.7.7 High Performance
	1.7.8 Adaptation to New Hardware
	1.7.9 Complete Set of Functions
	1.7.10 Broad Spectrum of Applications
	1.7.11 The Future

	1.8 THE PARTS OF OS-9
	1.8.1 Utilities
	1.8.2 Language compilers
	1.8.3 Kernel
	1.8.4 File managers
	1.8.5 Device drivers
	1.8.6 Device descriptors
	1.8.7 Program support modules (trap handlers)
	1.8.8 Customization modules

	1.9 SPECIAL FEATURES OF OS-9
	OS-9 modules
	Relocatable, re-entrant, ROMmable operating system and programs
	Tree-structured I/O system
	Dynamically modifiable I/O system
	Customization hooks throughout
	User interface is very similar to UNIX
	Very regular utility command line syntax



